Skip to main content
Log in

Applicability and methodology of determining sustainable yield in groundwater systems

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use.

Résumé

Il y a en ce moment un besoin de révision de la définition et de la méthodologie pour déterminer le débit spécifique.durable. Les raisons sont les suivantes : (1) la définition courante et les concepts sont ambigus et ne sont pas justifiés physiquement – ils ne peuvent donc pas être utilisés dans des applications quantitatives, (2) il y a un besoin d’éliminer les diverses interprétations et mauvaises interprétations et d’apporter une bonne base applicable (3) la notion clamant que tous les systèmes d’eau souterraine sont ou peuvent devenir durable est invalide (4) souvent il y a un nombre de facteurs excessif qui se rejoignent dans la définition, et qui ne sont pas toujours quantifiables (5) il y a souvent confusion entre le débit durable et optimal et le débit spécifique durable (6) dans de nombreux environnements arides et semi-arides, les systèmes d’eau souterraine ne peuvent être sensiblement développés selon une politique de développement durable particulière où les contraintes écologiques sont appliquées. La dérivation du débit spécifique en utilisant le principe de la conservation des masses mène à l’expression de développement durable de bassin-versant, développement « minier » (mining) partiel (non durable), et développement minier total de l’exploitation (non durable) qui peut être déterminé en utilisant des méthodes numériques de modélisation, sélectionnées en fonction de contraintes appliquées. Dans certains cas il faut reconnaître que la ressource en eau souterraine n’est pas renouvelable et que sont utilisation ne peut donc pas être durable. Dans ces cas ses destinées seraient la meilleure utilisation équitable.

Resumen

Existe actualmente necesidad de revisar la definición y metodología para determinar lo que significa producción sostenible. Las razones son: (1) los conceptos y definiciones actuales son ambiguos y sin base física de modo que no pueden usarse para aplicación cuantitativa, (2) existe necesidad de eliminar interpretaciones variables y mal interpretaciones y aportar bases sanas para aplicación, (3) la noción de que todos los sistemas de aguas subterráneas son o pueden ser sostenibles no es valida, (4) frecuentemente existen un numero excesivo de factores ligados a la definición de producción sostenible los cuales no son fácil de cuantificar, (5) frecuentemente existe confusión entre la producción optima de un establecimiento y la producción sostenible de una cuenca, (6) en muchos ambientes áridos a semi-áridos los sistemas de aguas subterráneas no pueden desarrollarse sensiblemente en base a una política de producción sostenible particularmente donde se aplican restricciones ecológicas. La derivación de producción sostenible utilizando principios de conservación de masa conduce a expresiones para producciones sostenibles en cuenca, minado parcial (no sostenible) y total (no sostenible) que pueden determinarse fácilmente utilizando métodos de modelos numéricos y seleccionados en base a restricciones aplicadas. En algunos casos tiene que reconocerse que el recurso de agua subterránea no es renovable y que por lo tanto su uso no puede ser sostenible. En estos casos su destino debe de ser el uso más equitativo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In administratively defined but geologically unbounded groundwater areas or zones the flows would also include lateral inflow and outflow through the up and down gradients of the aquifer system.

  2. A suggested distinction is made here between capture and interception. Abstraction could intercept outflow from discharge components (evapotranspiration, springs, potential base flow) since this flow originates from natural aquifer recharge or it could capture natural recharge and stream runoff and baseflow/lake and wetland surface water since these components originate (except baseflow) outside of the groundwater system. The word interception makes a distinction that this refers to taking groundwater flow that originated as natural recharge. (intercept: to take or seize on the way from one place to another, cut off from the intended destination- Macquarie Dictionary)

  3. Note that abstraction interception of natural outflow means that an equivalent volume of natural inflow (recharge) is eventually captured.

  4. Where there is a partial return through percolation of pumping for irrigation P s would represent the net abstraction.

  5. This is similar to the Maximum Stable Basin Yield (Freeze 1971; Freeze and Cherry 1979).

  6. Seepage rates that are controlled entirely by stream stage and streambed permeability with water tables (potentiometric surfaces) below the streambed bottom.

  7. Note that Ppm, Pd, Ps3, Ps2, Ps1 are starting values only on the vertical axis with each curve representing the storage depletion rate that ultimately reaches zero at equilibrium but a constant value for the particular partial mining (non-equilibrium) conditions. For each sustainable rate, the area under each curve is the sustenance storage required to reach equilibrium.

  8. Such analysis could also consider changes in land usage that affect the hydrological water balance.

  9. It is true to say, however, that a well field would be less desirable at this location, since simulation indicates that it would create considerably more drawdown than for the Case I and Case II before reaching equilibrium.

  10. If recharge is eliminated from the numerical model (Bredehoeft 2004) then so too must discharge under pre-development conditions. In this case, the numerical model would always default to a mining yield case (no equilibrium could be achieved) unless there is sufficient surface water available in the form of stream depletion say to sustain the basin abstraction.

  11. This runoff would be generated from the hills of hard rock surrounding the alluvial aquifer and could also include baseflow from this area. Groundwater in the hard rock could be considered for the most part to be part of the unrecoverable storage as given in this paper.

  12. In this case, the sustenance storage used to achieve equilibrium can be calculated to be up to 3% of the total storage for this example.

  13. For example, in the commercially available Modflow-Surfact code (Hydrogeologic 1996a) maximum drawdown can be set in the production facility or facilities so that these levels are not exceeded during the simulation by automatically reducing respective pumping rates during the simulation.

  14. Such output is currently not readily available in convenient files for plotting in most MODFLOW packages—developers should address this deficiency.

References

  • Anderson M, Low R, Foot S (2002) Sustainable groundwater development in arid, high Andean basins. In: Hiscock KM et al Paper in Sustainable Groundwater Development. Geol Soc Lond

  • Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Groundwater 42(1): Jan–Feb

    Google Scholar 

  • American Society of Civil Engineering (1961) Ground-water basin management. Manual of Engineering Practice no. 40, p 52

  • American Society of Civil Engineering (1972) Groundwater management. Manual of Engineering Practice 40

  • ARMCANZ (1997) Allocation and the use of groundwater. A national framework for improved groundwater management in Australia

  • Barnett SR (2002) Sustainability issues in groundwater development. Darwin conference: balancing the groundwater budget, May 12–17, Darwin 2002

    Google Scholar 

  • Bouwer H (1978) Groundwater hydrology. McGraw-Hill, New York

  • Bredehoeft JD, Papadopulos SS, Cooper HH Jr (1982) The water budget myth. In: Scientific basis of water resource management, studies in geophysics. National Academy Press, Washington, DC, pp 51–57

    Google Scholar 

  • Bredehoeft JD (1997) Safe yield and the water budget myth. Ground Water 35(6):929

    Google Scholar 

  • Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40(4):340–345

    PubMed  Google Scholar 

  • Bredehoeft JD (2004) Reply to M. Sophocleous in discussion of papers section (C. Neuzil discussion editor). Groundwater 42(4) 618–619, July–August

    Google Scholar 

  • Brudtland GH (Chair) (1997) Our common future. Oxford University Press, Oxford

    Google Scholar 

  • Conkling H (1946) Utilization of groundwater storage in stream system development. Trans Am Soc Civ Eng 111:275–305

    Google Scholar 

  • Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10(2)

    Google Scholar 

  • DIPNR (2002) The NSW State groundwater dependent ecosystems policy. Prepared by the (then) Department of Land and Water Conservation. NSW Government printer. ISBN 0-7347–5225-3

  • Domenico P (1972) Concepts and models in groundwater hydrology. McGraw-Hill, New York

  • Evans WR, Cook PG (2002) What is a sustainable yield for Australia’s groundwater systems? Intl Assoc Hydrogeologists Darwin Conference: balancing the groundwater budget, Darwin May 12–17, 2002

    Google Scholar 

  • Evans WR, Richardson S, Hillier J, Picken E, Dyson P, Ross J, Middlemis H (2003) Watermark: sustainable groundwater use within irrigated regions. Project 1: sustainable yield estimation. Milestone 1, Final report. Murray-Darling Basin Commission, July

    Google Scholar 

  • Freeze RA (1971) Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin. Water Resour Res 7:347–366

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall

  • Hiscock KM, Rivett MO, Davison RM (eds) (2002) Sustainable groundwater development. Spec Publ No. 193. Geol Soc Lond

    Google Scholar 

  • HydroGeologic (1996a) Modflow-Surfact software (version 2.2) documentation. Input instructions for the FWL4 Package. Hydrogeologic Inc, Herndon, VA 20170, USA

    Google Scholar 

  • HydroGeologic (1996b) MODHMS software (version 2.0) documentation. Volume III, Surface water flow modules. Hydrogeol Inc, Herndon, VA 20170, USA

    Google Scholar 

  • Kalf FRP, Woolley D (2004) Definition and applicability of the sustainable yield concept for management of Australia’s groundwater systems. Paper presented at the 9th Murray-Darling groundwater workshop. Bendigo 17–19, Feb

  • Kazmann RG (1956) Safe yield in ground-water development, reality or illusion? J Irr Drain Div, Am Soc Civ Eng 82(IR3):12

    Google Scholar 

  • Kazmann RG (1988) Modern hydrology, 3rd edn. National Water Well Association Publication, Library of Congress Cataloging-in-Publication Data, GB661.2.K39; 551.48; 88-15183

  • Kendy E (2003) The false promise of sustainable pumping rates. Ground Water 41(1):2–4

    Google Scholar 

  • Lee CH (1915) The determination of safe yield of underground reservoirs of the closed basin type. Trans Am Soc Civil Eng 78:148–151

    Google Scholar 

  • Meinzer OE (1920) Quantitative methods of estimating groundwater supplies. Bull Geol Soc Am 31

  • Meinzer OE (1923) Outline of groundwater hydrology, with definitions. US Geol Surv Water Supply Pap 494

  • Price M (2002) Who needs sustainability? In: Hiscock KM et al (ed) Paper in sustainable groundwater development. Geol Soc Lond

    Google Scholar 

  • Prudic DE (1989) Documentation of a computer program to simulate stream-aquifer relations using a modular finite-difference groundwater flow model (STR1). US Geol Surv Open-File Rep 88–729, Carson City, Nevada

  • Sakiyan J, Yazicigil H (2004) Sustainable development and management of an aquifer system in western Turkey. Hydrogeol J 12:66–80

    Article  Google Scholar 

  • Sandoval R (2004) A participatory approach to integrated aquifer management: The case of Guanajuato State, Mexico. Hydrogeol J 12:6–13

    Article  Google Scholar 

  • Sophocleous M (1997) Managing water resources systems: why safe yield is not sustainable. Ground Water 35(4):561

    CAS  Google Scholar 

  • Sophocleous M (ed) (1998) Perspectives on sustainable development of water resources in Kansas. Geol Sur Bull, Kansas 239

    Google Scholar 

  • Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43

    Article  Google Scholar 

  • Stuart WT (1945) Groundwater resources of the Lansing area. Mich Dept of Cons, Geol Surv Div Rep no. 13

  • Synder JH (1955) Groundwater in California—the experience of Antelope Valley, Univ. Calif. (Berkeley), Agri Expt Sta, Giannini Found. Study no. 2

  • Theis CV (1940) The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civil Eng 10(5):277–280

    Google Scholar 

  • Todd DK (1959) Groundwater hydrology. Wiley, New York

    Google Scholar 

  • Thomas HE (1951) The conservation of groundwater, McGraw-Hill, New York

    Google Scholar 

  • Thomas HE (1955) Water rights in areas of ground-water mining. US Geol Surv Circ 347

  • Williams CC, Lohman SW (1949) Geology and ground-water resources of a part of south central Kansas. Geol Surv Kansas, Bull 79

  • Young ME (2002) Institutional development for sustainable groundwater management—an Arabian perspective, paper. In: Hiscock KM et al Sustainable groundwater development. Geol Soc Lond

Download references

Acknowledgements

The authors thank Clifford Voss, William Alley, Marios Sophocleous and an anonymous reviewer for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans R. P. Kalf.

Additional information

It should be noted that this example is not to imply that this is a universal mode of behaviour since it assumes capture and interception occur at about the same time. It is used to illustrate the general principles without introducing additional complexity and the need to cover all possibilities that would include where either capture or interception is dominant and initiated at different times.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalf, F.R.P., Woolley, D.R. Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol J 13, 295–312 (2005). https://doi.org/10.1007/s10040-004-0401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0401-x

Keywords

Navigation