Skip to main content

Advertisement

Log in

Arsenic contamination of groundwater: Mitigation strategies and policies

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Contamination of groundwater by arsenic from natural geochemical sources is at present a most serious challenge in the planning of large-scale use of groundwater for drinking and other purposes. Recent improvements in detection limits of analytical instruments are allowing the correlation of health impacts such as cancer with large concentrations of arsenic in groundwater. However, there are at present no known large-scale technological solutions for the millions of people—mostly rural—who are potentially affected in developing countries. An overall framework of combating natural resource degradation is combined with case studies from Chile, Mexico, Bangladesh and elsewhere to arrive at a set of strategic recommendations for the global, national and local dimensions of the arsenic “crisis”. The main recommendations include: the need for flexibility in the elaboration of any arsenic mitigation strategy, the improvement and large-scale use of low-cost and participatory groundwater quality testing techniques, the need to maintain consistent use of key lessons learned worldwide in water supply and sanitation and to integrate arsenic as just one other factor in providing a sustainable water supply, and the following of distinct but communicable tracks between arsenic-related developments and enhanced, long-term, sustainable water supplies.

Résumé

La contamination des eaux souterraines par l’arsenic provenant de sources naturelles est actuellement un sujet des plus graves dans l’organisation d’un recours à grande échelle des eaux souterraines pour la boisson et d’autres usages. De récentes améliorations dans les limites de détection des équipements analytiques permettent de corréler les effets sur la santé tels que le cancer à de fortes concentrations en arsenic dans les eaux souterraines. Toutefois, il n’existe pas actuellement de solutions technologiques à grande échelle connues pour des millions de personnes, surtout en zones rurales, qui sont potentiellement affectées dans les pays en développement. Un cadre d’ensemble pour lutter contre la dégradation naturelle des ressources est associé à des études de cas au Chili, au Mexique, au Bangladesh et ailleurs afin d’établir un ensemble de recommandations stratégiques pour les dimensions globale, nationale et locale de la «crise» de l’arsenic. Les principales recommandations sont les suivantes: le besoin d’une flexibilité pour élaborer une stratégie de diminution de l’arsenic, l’amélioration et l’utilisation à grande échelle de techniques peu coûteuses et associant les populations pour tester la qualité de l’eau souterraine, le besoin de maintenir un usage logique des leçons clés acquises de par le monde pour l’alimentation en eau et la santé publique, celui d’intégrer l’arsenic simplement comme un autre facteur pour assurer une alimentation durable en eau, et pour suivre des pistes distinctes mais communicables entre les développements liés à l’arsenic et les alimentations durables en eau mises en valeurs à long terme.

Resumen

La contaminación de las aguas subterráneas con arsénico procedente de fuentes geoquímicas naturales es actualmente uno de los retos principales de la planificación a gran escala de las aguas subterráneas para uso de boca y otros fines. Las recientes mejoras en los límites de detección del instrumental analítico permiten correlacionar impactos en la salud tales como el cáncer con concentraciones elevadas de arsénico en las aguas subterráneas. Sin embargo, a fecha de hoy no existen soluciones tecnológicas de gran escala para millones de personas—población principalmente rural—que están potencialmente afectadas en los países en vías de desarrollo. Se combina un enfoque general para combatir la degradación de los recursos naturales con estudios concretos de Chile, México, Bangladesh y cualquier otro lugar que permita obtener un conjunto de recomendaciones estratégicas para las dimensiones global, nacional y local de la “crisis” del arsénico. Las recomendaciones principales incluyen la necesidad de flexibilizar la elaboración de cualquier estrategia de mitigación del arsénico; la mejora y uso a gran escala de técnicas de muestreo de las aguas subterráneas que sean económicas y participativas; la necesidad de mantener un uso coherente de las lecciones clave aprendidas a nivel mundial en el suministro y saneamiento del agua y de integrar el arsénico como otro factor más en la consecución de un suministro sustentable de agua; y el seguimiento de trazas distintas pero comunicables entre los desarrollos relacionados con el arsénico y los abastecimientos de agua sustentables a largo plazo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Although reliable data are scarce, in Bangladesh the mortality rate due to diarrheal diseases was estimated at 120,000–200,000 per annum, of which possibly half can be attributed to drinking of pathogen-contaminated water (Dewier and Islam 1997). The best estimates so far for arsenicosis mortality suggest an order of magnitude of 20,000–40,000. These figures are by themselves insufficient to warrant a definitive prioritization, but they do highlight the need for careful consideration of priorities.

  2. Arsenic, for example, substantially lowers the productivity of rice plants at concentrations above 50 μg/L (causing “straight-stem” disease due to small rice grains).

  3. Likely much of the arsenic will be adsorbed onto oxidized iron particles when discharged under aerobic conditions. However, as biomass is collected on the ground and starts rotting in the topsoil during subsequent seasons, the arsenic may be released again.

References

  • Alam MGM, Snow ET, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Samta Village. Bangladesh Sci Total Environ 308(1/3):83–96

    Google Scholar 

  • Anawar HM, Yoshioka T, Ishizuka T, Safiullah S, Kato K, Akai J, Komaki K, Terao H (2003) Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J Geochem Explor 77(2/3):109–131

    Google Scholar 

  • Berg M, Schertenleib R, Giger W, Hong Con Tran, Thi Chuyen Nguyen, Hung Viet Pham (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35(13):2621–2626

    Article  CAS  PubMed  Google Scholar 

  • Black B, Chinn TD, Rodriguez A, Huckabee A (1999) Arsenic: answers to questions commonly asked by drinking water professionals. AWWA Research Foundation, Denver, CO

  • Blokland M, van Wijk C, Pfohl J, Abdullah S (eds) (1998) BAMWSP Bangladesh Arsenic Mitigation–Water Supply Project, Operational Manual, 5 volumes. Ministry of Local Government and Cooperatives, Dhaka

  • Caldwell BK, Smith W, Caldwell JC, Mitra SN (2003) Searching for an optimum solution to the Bangladesh arsenic crisis. Social Sci Med 56(10):2089–2096

    Article  Google Scholar 

  • Clark TW (2002) The policy process: a practical guide for natural resource professionals. Yale University Press, New Haven, CT

    Google Scholar 

  • Curry A, Carrin G, Bartram J, Yamamura S, Heijnen H, Sims J, Hueb J, Sato Y (2000) Towards an assessment of the socioeconomic impact of arsenic poisoning in Bangladesh. World Health Organization, WHO/SDE/WSH/004, Geneva

  • DCH/Uposhon (2000) Arsenic in Bangladesh: report on the 500-Village Rapid Assessment Project. Dhaka Community Hospital, Dhaka

    Google Scholar 

  • Dewier M, Islam R (1997) Contributions of water supply, sanitation and hygiene activities to health in Bangladesh. Swiss Agency for Development and Cooperation, Dhaka

  • Gonzalez UM, Navarro JD, Fiorentino E, Sequeira CE (2002) Landscape, surface runoff and groundwater quality in the District of Puan, Province of Buenos Aires, Argentina. J Soil Water Conserv 57(3):192–195

    Google Scholar 

  • Kayajanian G (2003) Arsenic, cancer and thoughtless policy. Ecotoxicol Environ Safety 55:2

    Google Scholar 

  • Khouri N, Chowdhury S (1999) Arsenic contamination of groundwater in Bangladesh. In: Legal aspects of groundwater management. The World Bank, Washington, DC

  • Kinley DH, Hossain Z (2003) Poisoned waters: desperately seeking solutions. World Watch 16(1):22–27

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman M (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234

    Article  CAS  PubMed  Google Scholar 

  • Mitchell B (2002) Resource and environmental management, 2nd edn. Pearson Education, Prentice Hall, London

  • Murray C, Lopez A (1996) The global burden of disease, vol 1. WHO, Harvard School of Public Health, The World Bank, Geneva

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300(5621):939–944

    Article  CAS  PubMed  Google Scholar 

  • Rawlins B, Lister B, Cave M (2002) Arsenic in UK soils: reassessing the risk. Proc Inst Civil Eng, Civil Eng 150:4

    Google Scholar 

  • Rosas I, Belmont R, Armienta A, Baez A (1999) Arsenic concentrations in water, soil, milk and forage in Comarga Lagunera, Mexico. Water Air Soil Pollut 112:133–149

    Article  CAS  Google Scholar 

  • Roychowdhury T, Tokunaga H, Ando M (2003) Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Sci Total Environ 308(1/3):15–35

    Google Scholar 

  • Smith AH, Arroyo AP, Mazumder DN, Kosnett MJ, Hernandez AL, Beeris M, Smith MM, Moore LE (2000) Arsenic-induced skin lesions among Atacameno people in Northern Chile despite good nutrition and centuries of exposure. Environ Health Perspect 108(7):617–20

    CAS  PubMed  Google Scholar 

  • Sukop MC (2000) Estimation of vertical concentration profiles from existing wells. Ground Water 38(6):836–841

    CAS  Google Scholar 

  • Van der Hoek W, Konradsen F, Jehangir WA (1999) Domestic use of irrigation water: health hazard or opportunity. Water Res Dev 15(1/2):107–119

    Google Scholar 

  • Viraraghavan T, Subramanian KS, Aruldoss JA (1999) Arsenic in drinking water—problems and solutions. Water Sci Technol 40(2):69–76

    Article  CAS  Google Scholar 

  • WHO (1995) The World Health Report 1995: bridging the gap. World Health Organization, Geneva

    Google Scholar 

  • WHO (1996) Water supply and Sanitation Sector Monitoring Report. World Health Organization, Geneva

  • WHO (1997) Arsenic in drinking water and resulting arsenic toxicity in India and Bangladesh—report of a regional consultation. World Health Organization, New Delhi

  • WHO (2001) Arsenic and arsenic compounds, 2nd edn. World Health Organization, Geneva, Environmental Health Criteria Ser no 224

  • World Bank (1998) Project appraisal document: Arsenic Mitigation–Water Supply Project Rep 18252-BD. The World Bank, Washington, DC

    Google Scholar 

  • WSSCC (1999) Vision 21: a shared vision for water supply, sanitation and hygiene and a framework for future action. Water Supply and Sanitation Collaborative Council, Geneva

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous reviewers and Dr. Karin Kemper (Associate Editor) for their useful comments as well as Ms. Katherin G. Golitzen for editorial assistance. The views expressed in this article are the authors’ and do not necessarily represent those of the World Bank or its affiliated agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy J. Alaerts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alaerts, G.J., Khouri, N. Arsenic contamination of groundwater: Mitigation strategies and policies. Hydrogeology Journal 12, 103–114 (2004). https://doi.org/10.1007/s10040-003-0306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-003-0306-0

Keywords

Navigation