Skip to main content
Log in

Solute transport in a single fracture with negligible matrix permeability: 2. mathematical formalism

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This report provides an overview of the mathematical expressions for modeling fundamental solute transport mechanisms at the fracture scale. It focuses on low-permeability rocks where advection in the matrix is negligible as compared to that in fractures. The following processes are considered: (1) advective transport in fractures, (2) hydrodynamic dispersion along the fracture axis, (3) molecular diffusion from the fracture to the porous matrix, (4) sorption reactions on the fracture walls and within the matrix, and (5) decay reactions. The aim of this review is to gather in a single article the transport equations and their analytical solutions, using a homogeneous notation to facilitate comparison and exploitation.

Résumé

Ce rapport présente une vue d'ensemble des expressions mathématiques proposées dans la littérature pour modéliser le transport de soluté à l'échelle de la fracture. L'accent est mis sur les roches faiblement perméables où le transport par convection dans la matrice rocheuse peut être considéré comme négligeable devant le transport dans les fractures. Les processus considérés sont les suivants: (1) transport par convection dans les fractures, (2) dispersion hydrodynamique, (3) échanges de soluté par diffusion moléculaire entre les fractures et la matrice rocheuse, (4) réactions de sorption sur les parois des fractures et à l'intérieur de la matrice et (5) réactions de décroissance. L'objectif premier de cette revue est de rassembler les équations de transport et leurs solutions analytiques en utilisant une notation homogène pour faciliter leur utilisation et les comparaisons.

Resumen

Este informe proporciona una revisión de las expresiones matemáticas para modelar los mecanismos fundamentales de transporte de solutos a escala de fracturas. Se centra en rocas de baja permeabilidad donde la advección en la matriz es despreciable en comparación con la de las fracturas. Se considera los procesos siguientes: (1) transporte advectivo en las fracturas; (2) dispersión hidrodinámica a lo largo del eje de la fractura; (3) difusión molecular desde la fractura a la matriz porosa; (4) reacciones de sorción en la pared de la fractura y en la matriz; y (5) reacciones de degradación. El propósito de esta revisión es reunir en un único artículo las ecuaciones de transporte y sus soluciones analíticas con una notación homogénea para facilitar su comparación y aplicación.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4

Similar content being viewed by others

References

  • Adler PM, Thovert J-F (1999) Fractures and fracture networks. Kluwer, Dordrecht, The Netherlands, 429 pp

  • Amadei B, Illangasekare T (1992) Analytical solutions for steady and transient flow in non-homogeneous and anisotropic rock joints. Int J Rock Mech Mineral Sci Geomech Abstr 29(6):561–572

    Google Scholar 

  • Amadei B, Illangasekare T (1994) A mathematical model for flow and solute transport in non-homogeneous rock fractures. Int J Rock Mech Mineral Sci Geomech Abstr 31:719–731

    Google Scholar 

  • Andersson J, Dverstorp B (1987) Conditional simulations of fluid flow in three-dimensional networks of discrete fractures. Water Resour Res 23(10):1876–1886

    Google Scholar 

  • Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc Lond Ser A 235:67–77

    Google Scholar 

  • Arnold BW, Zhang H, Parsons AM (2000) Effective-porosity and dual-porosity approaches to solute transport in the saturated zone at Yucca Mountain: implications for repository performance assessment. In: Faybishenko B, Witherspoon PA, Benson SM (eds) Dynamics of fluids in fractured rock. Am Geophys Union Geophys Monogr 122:313–322

    Google Scholar 

  • Banton O, Bangoy LM (1997) Hydrogéologie, multiscience environnementale des eaux souterraines [Hydrogeology, environmental multiscience of groundwater]. Presses de l'Université du Québec/AUPELF, Sainte-Foy, Québec, 460 pp

  • Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math Mech 24(5):852–864

    Google Scholar 

  • Barker JA (1982) Laplace transform solutions for solute transport in fissured aquifers. Adv Water Res 5(2):98–104

    Google Scholar 

  • Bear J (1993) Modeling flow and contaminant transport in fractured rocks. In: Bear J, Tsang CF, de Marsily G (eds) Flow and contaminant transport in fractured rock. Academic Press, San Diego, CA, USA, pp 1–37

  • Berkowitz B, Scher H (1995) On characterization of anomalous dispersion in porous and fractured media. Water Resour Res 31(6):1461–1466

    Google Scholar 

  • Berkowitz B, Scher H (1998) Theory of anomalous chemical transport in random fracture networks. Phys Rev E 57(5B):5858–5869

    Article  CAS  Google Scholar 

  • Berkowitz B, Zhou Z (1996) Reactive solute transport in a single fracture. Water Resour Res 32(4):901–913

    CAS  Google Scholar 

  • Berkowitz B, Bear J, Braester C (1988) Continuum models for contaminant transport in fractured porous formations. Water Resour Res 24(8):1225–1236

    Google Scholar 

  • Berkowitz B, Kosakowski G, Margolin G, Scher H (2001) Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media. Ground Water 39(4):593–604

    CAS  PubMed  Google Scholar 

  • Bertels SP, DiCarlo DA, Blunt MJ (2001) Measurement of aperture distribution, capillary pressure, relative permeability, in situ saturation in a rock fracture using computed tomography scanning. Water Resour Res 37(3):649–662

    Google Scholar 

  • Bibby R (1981) Mass transport of solutes in dual-porosity media. Water Resour Res 17(4):1075–1081

    Google Scholar 

  • Bodin J, Delay F, de Marsily G (2003) Solute transport in fissured aquifers: 1. fundamental mechanisms. Hydrogeol J (in press)

    Google Scholar 

  • Boffa JM, Allain C, Hulin JP (1998) Experimental analysis of fracture rugosity in granular and compact rocks. EP J Appl Phys 2(3):281–289

    Article  Google Scholar 

  • Boffa JM, Allain C, Chertcoff R, Hulin JP, Plouraboué F, Roux S (1999) Roughness of sandstone fracture surfaces: profilometry and shadow length investigations. Eur Phys J B 7(2):179–182

    Article  CAS  Google Scholar 

  • Boving TB, Grathwohl P (2001) Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. J Contam Hydrol 53:85–100

    Article  CAS  PubMed  Google Scholar 

  • Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res 92:1337–1347

    Google Scholar 

  • Brown SR (1989) Transport of fluid and electric current through a single fracture. J Geophys Res 94(B7):9429–9438

    Google Scholar 

  • Brown SR (1995) Simple mathematical model of a rough fracture. J Geophys Res 100(B4):5941–5952

    Google Scholar 

  • Brown SR, Stockman HW, Reeves SJ (1995) Applicability of the Reynolds equation for modeling fluid flow between rough surfaces. Geophys Res Lett 22(18):2537–2540

    Google Scholar 

  • Brown SR, Caprihan A, Hardy R (1998) Experimental observation of fluid flow channels in a single fracture. J Geophys Res 103(B3):5125–5132

    Google Scholar 

  • Bruel T, Petit JP, Massonnat G, Guérin R, Nolf JL (1999) Relation entre écoulements et fractures ouvertes dans un système aquifère compartimenté par des failles et mise en évidence d'une double porosité de fractures [Relationship between hydrodynamics and open fractures in a fractured system compartmentalised by faults and confirmation of a double fracture porosity]. Bull Soc Géol Fr 170(3):401–412

    Google Scholar 

  • Cacas MC, Ledoux E, de Marsily G, Barbreau A, Calmels P, Gaillard B, Margritta R (1990a) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation. 2. The transport model. Water Resour Res 26(3):491–500

    CAS  Google Scholar 

  • Cacas MC, Ledoux E, de Marsily G, Tillie B, Barbreau A, Calmels P, Durand E, Feuga B, Peaudecerf P (1990b) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation. 1. The flow model. Water Resour Res 26(3):479–489

    CAS  Google Scholar 

  • Carrera J, Sanchez-Vila X, Benet I, Medina A, Galarza G, Guimera J (1998) On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol J 6:178–190

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, New York, 510 pp

  • Chen CS (1985) Analytical and approximate solutions to radial dispersion from an injection well to a geological unit with simultaneous diffusion into adjacent strata. Water Resour Res 21(8):1069–1076

    Google Scholar 

  • Chen CS (1986) Solutions for radionuclide transport from an injection well into a single fracture in a porous formation. Water Resour Res 22(4):508–512

    Google Scholar 

  • Coats KH, Smith BD (1964) Dead end pore volume and dispersion in porous media. Soc Petrol Eng J 23:73–84

    Google Scholar 

  • Cook PG, Solomon DK, Sanford WE, Busenberg E, Plummer LN, Poreda RJ (1996) Inferring shallow groundwater in saprolite and fractured rock using environmental tracers. Water Resour Res 32(6):1501–1509

    Google Scholar 

  • Cormenzana J (2000) Transport of a two-member decay chain in a single fracture: simplified analytical solution for two radionuclides with the same transport properties. Water Resour Res 36(5):1339–1346

    Google Scholar 

  • Crank J (1980) The mathematics of diffusion. Oxford University Press, Oxford, 424 pp

  • Crump KS (1976) Numerical inversion of Laplace transforms using a Fourier series approximation. J ACM 23(1):89–96

    Article  Google Scholar 

  • Cvetkovic V, Selroos JO, Cheng H (1999) Transport of reactive tracers in rock fractures. J Fluid Mech 378:335–356

    Article  CAS  Google Scholar 

  • David C (1993) Geometry of flow paths for fluid transport in rocks. J Geophys Res 98(B7–12):267–278

    Google Scholar 

  • Dershowitz WS, Fidelibus C (1999) Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method. Water Resour Res 35(9):2685–2691

    Google Scholar 

  • Dershowitz W, Miller I (1995) Dual porosity fracture flow and transport. Geophys Res Lett 22(11):1441–1444

    Google Scholar 

  • Dershowitz B, Thorsten E, Follin S, Andersson J (1999) SR 97: Alternative models project. Discrete fracture network modelling for performance assessment of Aberg, SKB R 99-43. Swedish Nuclear Fuel Waste Management Co, Stockholm, Sweden

    Google Scholar 

  • Detwiler RL, Rajaram H, Glass RJ (2000) Solute transport in variable-aperture fractures: an investigation of the relative importance of Taylor dispersion and macrodispersion. Water Resour Res 36(7):1611–1625

    Google Scholar 

  • Djik P, Berkowitz B (1999) Three-dimensional flow measurements in rock fractures. Water Resour Res 35(12):3955–3959

    Google Scholar 

  • Djik P, Berkowitz B, Bendel P (1999) Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI). Water Resour Res 35(2):347–360

    Google Scholar 

  • Einstein A (1956) Investigations on the theory of the brownian movements. Dover Publications, New York, 119 pp

  • Feenstra S, Cherry JA, Sudicky EA, Haq Z (1984) Matrix diffusion effects on contaminant migration from an injection well in fractured sandstone. Ground Water 22(3):307–316

    CAS  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, USA, 604 pp

  • Fujikawa Y, Fukui M (1990) Adsorptive solute transport in fractured rock: analytical solutions for delta-type source conditions. J Contam Hydrol 6:85–102

    CAS  Google Scholar 

  • Garnier JM, Crampon N, Préaux C, Porel G, Vreulx M (1985) Traçages par 13C, 2H, I et uranine dans la nappe de la craie sénonienne en écoulement radial convergent (Béthunes, France) [Tracing 13C, 2H, I and uranine through the senonian chalk aquifer (Béthunes, France) using a two-well method]. J Hydrol 78:379–392

    Google Scholar 

  • Ge S (1997) A governing equation for fluid flow in rough fractures. Water Resour Res 33(1):53–61

    Google Scholar 

  • Gelhar LW (1987) Application of stochastic models to solute transport in fractured rocks, SKB TR 87-05. Swedish Nuclear Fuel Waste Management Co, Stockholm, Sweden, 55 pp

  • Gelhar LW (1993) Stochastic subsurface hydrology. Prentice Hall, Englewood Cliffs, NJ, USA, pp 184–194, 271–281

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974

    CAS  Google Scholar 

  • Gentier S, Hopkins D, Riss J (2000) Role of fracture geometry in the evolution of flow paths under stress. In: Faybishenko B, Witherspoon PA, Benson SM (eds) Dynamics of fluids in fractured rock. Am Geophys Union Geophys Monogr 122:169–184

    Google Scholar 

  • Gerke HH, van Genuchten MT (1996) Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media. Advance Water Res 19(6):343–357

    Google Scholar 

  • Griffioen J (1998) Suitability of the first-order mass transfer concept for describing cyclic diffusive mass transfer in stagnant zones. J Contam Hydrol 34:155–165

    Article  CAS  Google Scholar 

  • Grisak GE, Pickens JF (1980) Solute transport through fractured porous media. 1. The effect of matrix diffusion. Water Resour Res 16(4):719–730

    Google Scholar 

  • Grisak GE, Pickens JF (1981) An analytical solution for solute transport through fractured media with matrix diffusion. J Hydrol 52:47–57

    Google Scholar 

  • Guérin FPM, Billaux DM (1994) On the relationship between connectivity and the continuum approximation in fracture-flow and transport modelling. Appl Hydrogeol 3:24–31

    Article  Google Scholar 

  • Gylling B, Birgersson L, Moreno L, Neretnieks I (1998) Analysis of a long-term pumping and tracer test using the channel network model. J Contam Hydrol 32:203–222

    Article  CAS  Google Scholar 

  • Gylling B, Moreno L, Neretnieks I (1999) The channel network model—a tool for transport simulation in fractured media. Ground Water 37(3):367–375

    CAS  Google Scholar 

  • Haggerty R (1999) Application of the multirate diffusion approach in tracer test studies at Äspö HRL, SKB R 99-62. Swedish Nuclear Fuel Waste Management Co, Stockholm, Sweden, 76 pp

  • Haggerty R, Gorelick SM (1995) Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour Res 31(10):2383–2400

    Google Scholar 

  • Haggerty R, Gorelik SM (1998) Modeling mass transfer processes in soil columns with pore-scale heterogeneity. Soil Sci Soc Am J 62(1):62–74

    CAS  Google Scholar 

  • Haggerty R, Fleming SW, Meigs LC, McKenna SA (2001) Tracer tests in a fractured dolomite. 2. Analysis of mass transfer in single-well injection-withdrawal tests. Water Resour Res 37(5):1129–1142

    Google Scholar 

  • Hakami E, Larsson E (1996) Aperture measurements and flow experiments on a single natural fracture. Int J Rock Mech Mineral Sci Geomech Abstr 33(4):395–404

    Google Scholar 

  • Himmelsbach T, Hotzl H, Maloszewski P (1994) Forced gradient tracer tests in a highly permeable fault zone. Appl Hydrogeol 3:40–47

    Article  Google Scholar 

  • Himmelsbach T, Hötzl H, Maloszewski A (1998) Solute transport processes in a highly permeable fault zone of Lindau Fractured Rock Test Site (Germany). Ground Water 5:792–800

    Google Scholar 

  • Hölttä P, Siitari-Kauppi M, Hakanen M, Huitti T, Hautojärvi A, Lindberg A (1997) Radionuclide transport and retardation in rock fracture and crushed rock column experiments. J Contam Hydrol 26(1–4):135–145

    Google Scholar 

  • Homp MR, Logan JD (1997) Contaminant transport in fractured media with sources in the porous domain. Transp Porous Media 29(3):341–353

    Article  Google Scholar 

  • Huang K, van Genuchten MT, Zhang R (1996) Exact solutions for one-dimensional transport with asymptotic scale-dependent dispersion. Appl Math Model 20:298–308

    Article  Google Scholar 

  • Huyakorn PS, Lester BH, Mercer JW (1983a) An efficient finite element technique for modeling transport in fractured porous media. 1. Single species transport. Water Resour Res 19(3):841–854

    Google Scholar 

  • Huyakorn PS, Lester BH, Mercer JW (1983b) An efficient finite element technique for modeling transport in fractured porous media. 2. Nuclide decay chain transport. Water Resour Res 19(5):1286–1296

    Google Scholar 

  • Johns RA, Steude JD, Castanier LM, Roberts PV (1993) Nondestructive measurements of fracture aperture in crystalline rock cores using X-ray computed tomography. J Geophys Res 98(B2):1889–1900

    Google Scholar 

  • Keller AA (1997) High resolution CAT imaging of fractures in consolidated materials. Int J Rock Mech Mineral Sci Geomech Abstr 34(3/4):358–375

    Google Scholar 

  • Keller AA (1998) High resolution, non-destructive measurement and characterization of fracture apertures. Int J Rock Mech Mineral Sci Geomech Abstr 35(8):1037–1050

    Google Scholar 

  • Keller AA, Roberts PV, Kitanidis PK (1995) Prediction of single phase transport parameters in a variable aperture fracture. Geophys Res Lett 22(11):1425–1428

    Google Scholar 

  • Keller AA, Roberts PV, Blunt MJ (1999) Effect of fracture aperture variations on the dispersion of contaminants. Water Resour Res 35(1):55–63

    Article  Google Scholar 

  • Kennedy CA, Lennox WC (1995) A control volume model of solute transport in a single fracture. Water Resour Res 31(2):313–322

    Google Scholar 

  • Kessler JH, Hunt JR (1994) Dissolved and colloidal contaminant transport in a partially clogged fracture. Water Resour Res 30(4):1195–1206

    Google Scholar 

  • Kohl T, Evans KF, Hopkirk RJ, Jung R, Rybach L (1997) Observation and simulation of non-Darcian flow transients in fractured rock. Water Resour Res 33(3):407–418

    Google Scholar 

  • Kosakowski G, Berkowitz B (1999) Flow pattern variability in natural fracture intersections. Geophys Res Lett 26(12):1765–1768

    Article  Google Scholar 

  • Kosakowski G, Berkowitz B, Scher H (2001) Analysis of field observations of tracer transport in a fractured till. J Contam Hydrol 47:29–51

    Article  CAS  PubMed  Google Scholar 

  • Küpper JA, Schwartz FW, Steffler PM (1995a) A comparison of fracture mixing models. 1: A transfer function approach to mass transport modeling. J Contam Hydrol 18(1):1–32

    Article  Google Scholar 

  • Küpper JA, Schwartz FW, Steffler PM (1995b) A comparison of fracture mixing models. 2: Analysis of simulations trials. J Contam Hydrol 18(1):33–58

    Article  Google Scholar 

  • Lage JL (1997) Contaminant transport through single fracture with porous obstructions. J Fluids Eng 119(1):180–187

    CAS  Google Scholar 

  • Lanaro F (2000) A random field model for surface roughness and aperture of rock fractures. Int J Rock Mech Mining Sci 37(8):1195–1210

    Google Scholar 

  • Larsson E (1997) Groundwater flow through a natural fracture: flow experiments and numerical modelling, SKB TR 97-16. Swedish Nuclear Fuel Waste Management Co, Stockholm, Sweden, 64 pp

    Google Scholar 

  • Lee C-H, Teng S-P (1993) An analytical model for radionuclide transport in a single fracture: considering nonequilibrium matrix sorption. Nucl Technol 101(1):67–78

    CAS  Google Scholar 

  • Leo CJ, Booker JR (1996) A time-stepping finite element method for analysis of contaminant transport in fractured porous media. Int J Numer Anal Methods Geomech 20(12):847–864

    Google Scholar 

  • Lichtner PC (2000) Critique of dual continuum formulations of multicomponent reactive transport in fractured porous media. In: Faybishenko B, Witherspoon PA, Benson SM (eds) Dynamics of fluids in fractured rock. Am Geophys Union Geophys Monogr 122:281–298

    Google Scholar 

  • Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658

    Google Scholar 

  • Louis C (1974) Introduction à l'hydraulique des roches [Introduction to rock hydraulics]. Bull BRGM Série 2 Section III 4:283–356

  • Maloszewski P, Zuber A (1985) On the theory of tracer experiments in fissured rock with a porosity matrix. J Hydrol 79:333–358

    CAS  Google Scholar 

  • Maloszewski P, Zuber A (1990) Mathematical modeling of tracer behaviour in short-term experiments in fissured rocks. Water Resour Res 26(7):1517–1528

    CAS  Google Scholar 

  • Maloszewski P, Zuber A (1992) On the calibration and validation of mathematical models for the interpretation of tracer experiments in groundwater. Advance Water Res 15(1):47–62

    Google Scholar 

  • Maloszewski P, Zuber A (1993) Tracer experiments in fissured rocks: matrix diffusion and the validity of models. Water Resour Res 29(8):2723–2735

    CAS  Google Scholar 

  • Maloszewski P, Herrmann A, Zuber A (1999) Interpretation of tracer tests performed in fractured rock of the Lange Bramke basin, Germany. Hydrogeol J 7:209–218

    Article  Google Scholar 

  • McKay LD, Gillham RW, Cherry JA (1993) Field experiments in a fractured clay till. 2. Solute and colloid transport. Water Resour Res 29(12):3879–3890

    CAS  Google Scholar 

  • Moench AF (1995) Convergent radial dispersion in a double-porosity aquifer with fracture skin: analytical solution and application to a field experiment in fractured chalk. Water Resour Res 31(8):1823–1835

    Google Scholar 

  • Molz FJ, Güven O, Melville JG (1983) An examination of scale-dependent dispersion coefficients. Ground Water 21(6):715–725

    Google Scholar 

  • Moreno L, Neretnieks I (1993a) Flow and nuclide transport in fractured media: the importance of the flow-wetted surface for radionuclide migration. J Contam Hydrol 13(1–4):49–71

    Google Scholar 

  • Moreno L, Neretnieks I (1993b) Fluid flow and solute transport in a network of channels. J Contam Hydrol 14(3–4):163–192

    Google Scholar 

  • Moreno L, Rasmuson A (1986) Contaminant transport through a fractured porous rock: impact of the inlet boundary condition on the concentration profile in the rock matrix. Water Resour Res 22(12):1728–1730

    Google Scholar 

  • Moreno L, Neretnieks I, Eriksen T (1985) Analysis of some laboratory tracer runs in natural fissures. Water Resour Res 21(7):951–958

    Google Scholar 

  • Moreno L, Tsang YW, Tsang CF, Hale FV, Neretnieks I (1988) Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observations. Water Resour Res 24(12):2033–2048

    CAS  Google Scholar 

  • Moreno L, Gylling B, Neretnieks I (1997) Solute transport in fractured media—the important mechanisms for performance assessment. J Contam Hydrol 25(3–4):283–298

    Google Scholar 

  • Mourzenko VV, Thovert JF, Adler PM (1995) Permeability of a single fracture ; validity of the Reynolds equation. J Phys II 5(3):465–482

    CAS  Google Scholar 

  • Mourzenko VV, Galamay O, Thovert J-F, Adler PM (1997) Fracture deformation and influence on permeability. Phys Rev E 56:3167–3184

    Article  CAS  Google Scholar 

  • Mourzenko V, Thovert J-F, Adler PM (2001) Permeability of self-affine fractures. Transp Porous Media 45:89–103

    Article  Google Scholar 

  • Neretnieks I (1980) Diffusion in the rock matrix: an important factor in radionuclide retardation? J Geophys Res 85(B8):4379–4397

    Google Scholar 

  • Neretnieks I (1993) Solute transport in fractured rock: applications to radionuclide waste repositories. In: Bear J, Tsang CF, de Marsily G (eds) Flow and contaminant transport in fractured rock. Academic Press, San Diego, CA, USA, pp 39–127

  • Neretnieks I, Rasmuson A (1984) An approach to modelling radionuclide migration in a medium with strongly varying velocity and block sizes along the flow path. Water Resour Res 20(12):1823–1836

    CAS  Google Scholar 

  • Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758

    Google Scholar 

  • Neuman SP (1994) Generalized scaling of permeabilities: validation and effect of support scale. Geophys Res Lett 21(5):349–352

    Google Scholar 

  • Neuzil CE, Tracy JV (1981) Flow through fractures. Water Resour Res 17:191–199

    Google Scholar 

  • Nicholl MJ, Rajaram H, Glass RJ, Detwiler R (1999) Saturated flow in a single fracture: evaluation of the Reynolds equation in measured aperture fields. Water Resour Res 35(11):3361–3373

    Google Scholar 

  • Nordqvist AW, Tsang YW, Tsang CF, Dverstorp B, Andersson J (1992) A variable aperture fracture network model for flow and transport in fractured rocks. Water Resour Res 28(6):1703–1713

    CAS  Google Scholar 

  • Novakowski KS (1992) The analysis of tracer experiments conducted in divergent radial flow fields. Water Resour Res 28(12):3215–3225

    Google Scholar 

  • Novakowski KS, Lapcevic PA (1994) Field measurement of radial solute transport in fractured rock. Water Resour Res 30(1):37–44

    Google Scholar 

  • Odling NE, Roden JE (1997) Contaminant transport in fractured rocks with significant matrix permeability, using natural fracture geometries. J Contam Hydrol 27(3–4):263–283

    Google Scholar 

  • Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. US Geol Survey Prof Paper 411-A, A1-A7

  • Ohlsson Y, Neretnieks I (1995) Literature survey of matrix diffusion theory and of experiments and data including natural analogues, SKB TR 95-12. Swedish Nuclear Fuel Waste Management Co, Stockholm, Sweden, 89 pp

  • Oron AP, Berkowitz B (1998) Flow in rock fractures: the local cubic law assumption reexamined. Water Resour Res 34(11):2811–2825

    Google Scholar 

  • Painter S, Cvetkovic V (2001) Stochastic analysis of early tracer arrival in a segmented fracture pathway. Water Resour Res 37(6):1669–1680

    Google Scholar 

  • Pang L, Hunt B (2001) Solutions and verification of a scale-dependent dispersion model. J Contam Hydrol 53:21–39

    Article  CAS  PubMed  Google Scholar 

  • Pankow JF, Jonhson RL, Hewetson JP, Cherry JA (1986) An evaluation of contaminant migration patterns at two waste disposal sites on fractured porous media in terms of the equivalent porous medium (EPM) model. J Contam Hydrol 1:65–76

    CAS  Google Scholar 

  • Persoff P, Pruess K (1995) Two-phase visualization and relative permeability measurements in natural rough-walled rock fractures. Water Resour Res 31(5):1175–1186

    Google Scholar 

  • Pickens JF, Grisak GE (1981) Modeling of scale-dependent dispersion in hydrogeologic systems. Water Resour Res 17(6):1701–1711

    Google Scholar 

  • Pinder GF, Huyakorn PS, Sudicky EA (1993) Simulation of flow and transport in fractured porous media. In: Bear J, Tsang CF, de Marsily G (eds) Flow and contaminant transport in fractured rock. Academic Press, San Diego, CA, pp 395–435

  • Plouraboué F (1996) Propriétés géométriques et propriétés de transport des fractures à parois rugueuses [Geometrical properties and transport properties of rough fractures]. PhD Thesis, University of Paris 7, 183 pp

  • Plouraboué F, Hulin JP, Roux S, Koplik J (1998) Numerical study of geometrical dispersion in self-affine rough fractures. Phys Rev E 58(3):3334–3346

    Article  Google Scholar 

  • Plouraboué F, Kurowski P, Boffa JM, Hulin JP, Roux S (2000) Experimental study of the transport properties of rough self-affine fractures. J Contam Hydrol 46:295–318

    Article  Google Scholar 

  • Poon CY, Sayles RS, Jones TA (1992) Surface measurement and fractal characterization of naturally fractured rocks. J Phys D Appl Phys 25:1269–1275

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Montemagno CD, Nolte DD (1997) Volumetric imaging of aperture distributions in connected fracture networks. Geophys Res Lett 24(18):2343–2346

    Google Scholar 

  • Rasmuson A (1984) Migration of radionuclides in fissured rock: analytical solutions for the case of constant source strength. Water Resour Res 20(10):1435–1442

    CAS  Google Scholar 

  • Rasmuson A, Neretnieks I (1981) Migration of radionuclides in fissured rock: the influence of micropore diffusion and longitudinal dispersion. J Geophys Res 86(B5):3749–3758

    CAS  Google Scholar 

  • Rasmuson A, Neretnieks I (1986) Radionuclide migration in strongly fissured zones: the sensitivity analysis to some assumptions and parameters. Water Resour Res 22(4):559–569

    Google Scholar 

  • Reedy OC, Jardine PM, Wilson GV, Selim HM (1996) Quantifying the diffusive mass transfer of nonreactive solutes in columns of fractured saprolite using flow interruption. Soil Sci Soc Am J 60(5):1376–1384

    CAS  Google Scholar 

  • Robinson NI, Sharp JM, Kreisel I (1998) Contaminant transport in sets of parallel finite fractures with fracture skins. J Contam Hydrol 31(1–2):83–109

    Google Scholar 

  • Roux S, Schmittbuhl J, Vilotte JP, Hansen A (1993) Some physical properties of self-affine rough surfaces. Europhys. Lett 23(4):277–282

    CAS  Google Scholar 

  • Roux S, Plouraboué F, Hulin JP (1998) Tracer dispersion in rough open cracks. Transp Porous Media 32(1):97–116

    Article  Google Scholar 

  • Rowe RK, Booker JR (1989) A semi-analytical model for contaminant migration in a regular two- or three-dimensional fractured network: conservative contaminants. Int J Numer Anal Methods Geomech 13:531–550

    Google Scholar 

  • Rowe RK, Booker JR (1990) A semi-analytical model for contaminant migration in a regular two- or three-dimensional fractured network: reactive contaminants. Int J Numer Anal Methods Geomech 14(6):401–425

    Google Scholar 

  • Rowe RK, Hammoud A, Booker JR (1989) The effect of multi-directional matrix diffusion on contaminant transport through fractured systems. In: Kobus H, Kinzelbach W (eds) Contaminant transport in groundwater. Balkema, Rotterdam, pp 259-266

  • Sato H (1999) Matrix diffusion of simple cations, anions, neutral species in fractured crystalline rocks. Nucl Technol 127(2):199–211

    CAS  Google Scholar 

  • Schmittbuhl J, Gentier S, Roux S (1993) Field measurements of the roughness of fault surfaces. Geophys Res Lett 20(8):639–641

    Google Scholar 

  • Schmittbuhl J, Schmitt F, Scholz CH (1995) Scaling invariance of crack surfaces. J Geophys Res 100:5953–5973

    Google Scholar 

  • Selroos JO, Cvetkovic V (1996) On the characterization of retention mechanisms in rock fractures, SKB TR 96-20. Swedish Nuclear Fuel Waste Management Co, Stockholm, Sweden, 54 pp

  • Selroos JO, Walker DD, Strom A, Gylling B, Follin S (2002) Comparison of alternative modelling approaches for groundwater flow in fractured rock. J Hydrol 257:174–188

    Article  Google Scholar 

  • Silliman SE, Simpson ES (1987) Laboratory evidence of the scale effect in dispersion of solutes in porous media. Water Resour Res 23(8):1667–1673

    Google Scholar 

  • Skagius K, Neretnieks I (1986a) Diffusivity measurements and electrical resistivity in rock samples under mechanical stress. Water Resour Res 22(4):570–580

    CAS  Google Scholar 

  • Skagius K, Neretnieks I (1986b) Porosities and diffusivities of some nonsorbing species in crystalline rocks. Water Resour Res 22(3):389–398

    CAS  Google Scholar 

  • Smith PA, Gautschi A, Vomvoris S, Zuidema P, Mazurek M (1997) The development of a safety assessment model of the geosphere for a repository sited in the crystalline basement of northern Switzerland. J Contam Hydrol 26:309–324

    Article  CAS  Google Scholar 

  • Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res 5(6):1273–1289

    Google Scholar 

  • Sudicky EA, Frind EO (1982) Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Water Resour Res 18(6):1634–1642

    Google Scholar 

  • Sudicky EA, Frind EO (1984) Contaminant transport in fractured porous media: analytical solution for a two-member decay chain in a single fracture. Water Resour Res 20(7):1021–1029

    Google Scholar 

  • Sudicky EA, McLaren RG (1992) The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour Res 28(2):499–514

    CAS  Google Scholar 

  • Tang DH, Frind EO, Sudicky EA (1981) Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resour Res 17(3):555–564

    Google Scholar 

  • Taylor SG (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc Lond Ser A 219:186–203

    Google Scholar 

  • Thompson ME, Brown SR (1991) The effect of anisotropic surface roughness on flow and transport in fractures. J Geophys Res 96(B13):21923–21932

    Google Scholar 

  • Tsang CF, Tsang YW, Hale FV (1991) Tracer transport in fractures: analysis of field data based on a variable-aperture channel model. Water Resour Res 27(12):3095–3106

    Google Scholar 

  • Tsang YW, Tsang CF (1987) Channel model of flow through fractured media. Water Resour Res 23(3):467–479

    CAS  Google Scholar 

  • Tsang YW, Tsang CF, Hale FV, Dverstorp B (1996) Tracer transport in a stochastic continuum model of fractured media. Water Resour Res 32(10):3077–3092

    Google Scholar 

  • Unger AJA, Mase CW (1993) Numerical study of the hydromechanical behavior of two rough fracture surfaces in contact. Water Resour Res 29(7):2101–2114

    Google Scholar 

  • Wallach R, Parlange JY (1998) Modeling transport in a single crack by the dual-porosity concept with a boundary layer at the interface. J Contam Hydrol 34(1–2):121–138

    Google Scholar 

  • Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Petrol Eng J 3:245–255

    Google Scholar 

  • Wealthall GP, Steele A, Bloomfield JP, Moss RH, Lerner DN (2001) Sediment filled fractures in the Permo-Triassic sandstones of the Cheshire Basin: observations and implications for pollutant transport. J Contam Hydrol 50:41–51

    Article  CAS  PubMed  Google Scholar 

  • Wels C, Smith L, Vandergraaf T (1996) Influence of specific surface area on transport of sorbing solutes in fractures: an experimental analysis. Water Resour Res 32(7):1943–1954

    Google Scholar 

  • Wels C, Smith L, Beckie R (1997) The influence of surface sorption on dispersion in parallel plate fractures. J Contam Hydrol 28(1–2):95–114

    Google Scholar 

  • Wheatcraft SW, Tyler SW (1988) An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour Res 24(4):566–578

    CAS  Google Scholar 

  • Widén H, Walker D (1999) SR 97 Alternative models project. Stochastic continuum modelling of Aberg, SKB R 99-42. Swedish Nuclear Fuel Waste Management Co, Stockholm, Sweden

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Google Scholar 

  • Wooding RA (1960) Instability of a viscous fluid of variable density in a vertical Hele–Shaw cell. J Fluid Mech 7:501–515

    Google Scholar 

  • Xu S, Wörman A (1999) Implications of sorption kinetics to radionuclide migration in fractured rocks. Water Resour Res 35(11):3429–3440

    Google Scholar 

  • Xu S, Wörman A, Dverstorp B (2001) Heterogeneous matrix diffusion in crystalline rock—implications for geosphere retardation of migrating radionuclides. J Contam Hydrol 47:365–378

    Article  CAS  PubMed  Google Scholar 

  • Yates SR (1990) An analytical solution for one-dimensional transport in heterogeneous porous media. Water Resour Res 26(10):2331–2338

    CAS  Google Scholar 

  • Yates SR (1992) An analytical solution for one-dimensional transport in porous media with an exponential dispersion function. Water Resour Res 28(8):2149–2154

    CAS  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30

    CAS  Google Scholar 

  • Zimmerman RW, Yeo IW (2000) Fluid flow in rock fractures: from the Navier–Stokes equations to the cubic law. In: Faybishenko B, Witherspoon PA, Benson SM (eds) Dynamics of fluids in fractured rock. Am Geophys Union Geophys Monogr 122:213–224

    Google Scholar 

  • Zimmerman RW, Kumar S, Bodvarsson GS (1991) Lubrication theory analysis of the permeability of rough-walled fractures. Int J Rock Mech Mineral Sci Geomech Abstr 28:325–331

    Google Scholar 

Download references

Acknowledgements

This work was partly funded by the "Programme National de Recherche en Hydrologie" (PNRH). We are grateful to Dr. R. Therrien and Dr. W.S. Dershowitz for their constructive comments on the manuscript. We are also grateful to M.C. Ferré (UMR 6532 Hydrasa, Université de Poitiers) for helping us in seeking reprints of the references cited in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bodin.

Notation

Notation

c f [M·L –3]:

Volume concentration of solute in the fracture

t [T]:

Time variable

x [L]:

Space coordinate along the flow direction in the fracture plane

u [L·T –1]:

Mean fluid velocity in the fracture

u i [L·T –1]:

Scalar component of the fluid velocity vector along the i direction (i = x, y, z)

D L [L 2·T –1]:

Hydrodynamic dispersion coefficient in the fracture

α L [L]:

Dispersivity in the fracture

D m [L 2·T –1]:

Molecular-diffusion coefficient of the solute in free water

Re [−]:

Reynolds number

ε [L]:

Fracture roughness (mean height of the fracture asperity)

Rr [−]:

Relative roughness

b [L]:

Half aperture of the fracture

W [L]:

Width of the fracture in the direction perpendicular to the pressure gradient

υ [L 2·T –1]:

Kinematic viscosity

μ [M·L –1·T –1]:

Dynamic viscosity

D h [L]:

Hydraulic diameter of the fracture

S [L 2]:

Flow section of the fracture

P ext [L]:

External perimeter of the flow section

ρ [M·L –3]:

Mass density of the fluid

g i [L 2·T –1]:

Scalar component of the gravitational acceleration vector along the i direction (i=x, y, z)

Q f unit [L 2·T –1]:

Flow rate per width unit in the fracture

Q f [L 3·T –1]:

Total flow rate in the fracture

P [M·L –1·T 2]:

Fluid pressure

H [L]:

Hydraulic head

K f [L·T –1]:

Hydraulic conductivity of the fracture.

m 0 [M]:

Injected mass

c 0 [M·L –3]:

Constant concentration for a continuous injection

k B [M·L 2·T –2·K –1]:

Boltzmann constant

T [K]:

Absolute temperature

r p [L]:

Radius of the solute molecules

τ c [T]:

Critical time needed for a particle to experience the whole cross-sectional profile of velocities in a fracture without sorption reaction on the fracture walls

τ′ c [T]:

Critical time needed for a particle to experience the whole cross-sectional profile of velocities in a fracture with sorption reaction on the fracture walls

x c [L]:

Minimum travel distance for which the Taylor–Aris dispersion regime is completely established in a parallel-plate fracture

R a [−]:

Retardation factor

〈2b〉 [L]:

Mean-fracture aperture in a fracture with variable aperture

λ β [L]:

Correlation length of the logarithm of the apertures in a fracture with variable aperture

σ β [−]:

Standard deviation of the logarithm of the apertures in a fracture with variable aperture

α g [L]:

Longitudinal macro-dispersivity in a fracture with variable aperture

h [L]:

Lag distance (variogram analysis)

P e [-]:

Peclet number

[φ] s :

Concentration of the element φ in the solid phase, expressed as a mass per unit surface [M·L –2] for a sorption on the fracture walls, or as a mass per unit mass of solid [M·M –1] for sorption onto the matrix

[φ] aq [M·L –3]:

Concentration of the element φ in the fluid phase

K d [L] or [L 3·M –1]:

Sorption coefficient

a w [L –1]:

Flow-wetted surface

R f [−]:

Retardation coefficient (solute sorption on the fracture walls)

\( \left[ \varphi \right]_s^0 \) [M·L –2] or [M·M –1]:

Maximal concentration adsorbed onto the solid phase

k ads [L·T –1] or [L 3·M –1·T –1]:

Adsorption rate

k dsp [T –1]:

Desorption rate

λ [T –1]:

Decay constant

t 1/2 [T]:

Half-life period

\( c_f^i ,c_f^j \) [M·L –3]:

Aqueous concentration of elements i and j in the fracture (decay chain reaction)

\( R_f^i ,R_f^j \) [−]:

Retardation coefficient of elements i and j (decay chain reaction)

ζ ij [−]:

Fraction of parent element i transformed into element j (decay chain reaction)

M [−]:

Total number of parent elements i transformed into element j (decay chain reaction)

D p [L 2·T –1]:

Pore-diffusion coefficient

D e [L 2·T –1]:

Effective-diffusion coefficient

D a [L 2·T –1]:

Apparent diffusion coefficient

δ D [−]:

Pore constrictivity

τ 2[−]:

Pore tortuosity

F f [-]:

Formation factor

c m [M·L -3]:

Aqueous-solute concentration in the rock matrix

θ m [−]:

Rock-matrix porosity

θ t [−]:

Transport porosity of the rock-matrix

θ s [−]:

Storage porosity of the rock-matrix

c s [M·M −1]:

Concentration of the sorbed solute in the solid phase of the rock matrix

D s [L 2·T –1]:

Diffusion coefficient in the sorbed phase

α [−]:

Capacity factor including the sorption properties of the matrix

ρ m [M·L –3]:

Bulk density of the rock matrix

β F [−]:

Freundlich exponent

A [L 2]:

Cross-sectional area of the matrix block normal to the transport direction in the fracture

B [L]:

Maximal depth of solute penetration in the matrix by diffusion

t′ 0 [T]:

Mean residence time in the fracture

p [£]:

Laplace parameter

T* [T]:

Half-period of the Fourier series for the numerical inversion of the Laplace transform

E [M·L –3]:

Absolute error tolerance for the numerical inversion of the Laplace transform

ρ c [M·L –3]:

Bulk density of the fracture-wall coating

δ c [L]:

Thickness of the fracture-wall coating

c im [M·L –3]:

Aqueous-solute concentration in the immobile zone (Coats–Smith model)

θ [−]:

Volumetric fraction of the mobile zone (Coats-Smith model)

θ′[−]:

Volumetric fraction of the immobile zone (Coats-Smith model)

ω [T –1]:

Mass-transfer coefficient (Coats-Smith model)

(c im ) j [M·L –3]:

Aqueous-solute concentration within the j th immobile zone (multiple-rate model)

β j [−]:

Ratio of total-solute mass in the immobile zone j, to the mass in the mobile zone at equilibrium (multiple-rate model)

α j [T –1]:

Apparent first-order mass-transfer coefficient associated with the j th immobile zone (multiple-rate model)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodin, J., Delay, F. & de Marsily, G. Solute transport in a single fracture with negligible matrix permeability: 2. mathematical formalism. Hydrogeology Journal 11, 434–454 (2003). https://doi.org/10.1007/s10040-003-0269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-003-0269-1

Keywords

Navigation