Skip to main content
Log in

Nanostrukturiertes synthetisches Knochenersatzmaterial zur Behandlung von Knochendefekten

Ergebnisse einer anwendungsbeobachtenden Studie

Nanostructured synthetic bone substitute material for treatment of bone defects

Results of an observational study

  • Originalien
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Bei der Versorgung von Knochendefektbrüchen ist bis heute die autologe Spongiosaplastik der Goldstandard zum Defektaufbau. In der Literatur werden Komplikationsraten bis zu 30 % angegeben. Deshalb ist man auf der Suche nach einem Knochenersatzmaterial, das den hohen Anforderungen an Osteoinduktivität, Osteokonduktivität und Osteogenese gerecht wird. Diese Studie untersucht Komplikationen und Frakturheilungsraten bei Patienten mit Knochendefekten, welche mit synthetischem silikatsubstituiertem Calciumphosphat behandelt wurden. Die festgestellten Komplikationsraten und Heilungsquoten zeigen im Literaturvergleich vergleichbare Ergebnisse wie sie mit einer Spongiosaplastik erreicht wurden. Die Komplikationsrate bei der Verwendung von silikatsubstituiertem Nanohydroxylapatit erscheint bei eingeschränkter Vergleichbarkeit niedriger als die Kombination der Komplikationsraten von Spongiosaplastik und Spongiosaentnahmestelle. Synthetische Knochenersatzstoffe zeigen hinsichtlich Komplikationen und Frakturheilungsraten gegenüber dem Goldstandard kein schlechteres Outcome und sollten bei der Behandlung von Knochendefektbrüchen an den Extremitäten und am Becken als Alternative zur autologen Spongiosaplastik berücksichtigt werden. Die Stärken dieser Studie liegen in einem prospektiven und konsekutiven Studiendesign. Eine Computertomographie aller eingeschlossenen Patienten wäre wünschenswert gewesen, war aber aus finanziellen und strahlenhygienischen Gründen nicht durchführbar.

Abstract

Autologous bone grafting is still the gold standard for the reconstruction of bone defects from fractures. Complication rates up to 30 % have been described in the literature for bone grafting procedures. Thus, research is concerned with the development of alternative bone substitutes, which satisfy the high requirements of bone inductivity, bone conductivity and osteogenesis. This study compared the complications and fracture healing rates of patients with bone defects treated with synthetic silicate-substituted calcium phosphate. Concerning complications and fracture healing rates, the results of our study are comparable to the results of autologous bone grafting in the available literature. Despite limited comparability, the complication rate of the treatment of bone defects with silicate-substituted nanohydroxyapatite seems lower than the combined complication rates for bone harvesting and grafting together. In our study synthetic bone substitutes did not show poorer results concerning complication rates and fracture healing compared to the gold standard. These materials should be considered as an alternative for the treatment of bone defects in fractures of the extremities and pelvis. The strength of the study lies in the prospective and consecutive design. A computed tomography of all included patients would have been desirable but could not be performed due to financial and radiation hygiene reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Abshagen K, Schrodi I, Gerber T et al (2009) In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone. J Biomed Mater Res A 91:557–566

    Article  CAS  PubMed  Google Scholar 

  2. Ahlmann E, Patzakis M, Roidis N et al (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am 84:716–720

    Article  PubMed  Google Scholar 

  3. Arrington ED, Smith WJ, Chambers HG et al (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 329:300–309

    Article  Google Scholar 

  4. Bellamy N (2008) WOMAC osteoarthritis index: user guide IX. University of Queensland, Department of Medicine, Brisbane

    Google Scholar 

  5. Bellamy N, Buchanan WW, Goldsmith CH et al (1988) Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840

    CAS  PubMed  Google Scholar 

  6. Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 240:53–62

    Google Scholar 

  7. Cassidy C, Jupiter JB, Cohen M et al (2003) Norian SRS cement compared with conventional fixation in distal radial fractures. J Bone Joint Surg Am 85:2127–2137

    Article  Google Scholar 

  8. Devlin NJ, Krabbe PF (2013) The development of new research methods for the valuation of EQ-5D-5L. Eur J Health Econ 14(Suppl 1):S1–S3

    Article  PubMed  Google Scholar 

  9. Dickson KF, Friedman J, Buchholz JG et al (2002) The use of BoneSource hydroxyapatite cement for traumatic metaphyseal bone void filling. J Trauma 53:1103–1108

    Article  CAS  PubMed  Google Scholar 

  10. Dimitriou R, Mataliotakis GI, Angoules AG et al (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury 42(Suppl 2):S3–S15

    Article  Google Scholar 

  11. Döhler C, Busse M, Gahr R (2001) Validierung des DASH-Scores am modifizierten Neer-Score. Klin Sportmed 2:57–66

    Google Scholar 

  12. Eastlund T (2006) Bacterial infection transmitted by human tissue allograft transplantation. Cell Tissue Bank 7:147–166

    Article  PubMed  Google Scholar 

  13. Eppley BL, Pietrzak WS, Blanton MW (2005) Allograft and alloplastic bone substitutes: A review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 16:981–989

    Article  PubMed  Google Scholar 

  14. Gelinsky M, Heinemann S (2010) Nanocomposites for tissue engineering. Nanotechnologies for the Life Sciences. Wiley VCH, Weinheim

    Google Scholar 

  15. Gerike W, Bienengraber V, Henkel KO et al (2006) The manufacture of synthetic non-sintered and degradable bone grafting substitutes. Folia Morphol (Praha) 65:54–55

    CAS  Google Scholar 

  16. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: An update. Injury 36:S20–S27

    Article  PubMed  Google Scholar 

  17. Gotz W, Gerber T, Michel B et al (2008) Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(R)) osteogenesis: A study on biopsies from human jaws. Clin Oral Implants Res 19:1016–1026

    Article  PubMed  Google Scholar 

  18. Greiner W, Greiner W, Claes C (2007) Der EQ-5D der EuroQol-Gruppe. In: Schöffski O, Graf v. d. Schulenburg J‑M (Hrsg) Gesundheitsökonomische Evaluationen. Springer, Berlin, Heidelberg, New York, S 403–414

    Google Scholar 

  19. Gunther K, Scharf H‑P, Pesch H‑J et al (1998) Einwachsverhalten von Knochenersatzstoffen: tierexperimentelle Untersuchung. Orthopade 27:105–117

    CAS  PubMed  Google Scholar 

  20. Hardenbrook MA, Lombardo SR (2006) Silicate-substituted calcium phosphate as a bone void filler after kyphoplasty in a young patient with multiple compression fractures due to osteogenesis imperfecta variant. Case report. Neurosurg Focus 21(6):E9. doi:10.3171/foc.2006.21.6.11

    Article  PubMed  Google Scholar 

  21. Heiss C, Mutschler W (2008) Knochenersatzmaterialien. Unfallchirurg 111:613–620

    Article  Google Scholar 

  22. Henkel KO, Gerber T, Dietrich W et al (2004) Novel calcium phosphate formula for filling bone defects. Initial in vivo long-term results. Mund Kiefer Gesichtschir 8:277–281

    Article  Google Scholar 

  23. Henkel KO, Gerber T, Dorfling P et al (2005) Repair of bone defects by applying biomatrices with and without autologous osteoblasts. J Craniomaxillofac Surg 33:45–49

    Article  PubMed  Google Scholar 

  24. Henkel KO, Gerber T, Lenz S et al (2006) Macroscopical, histological, and morphometric studies of porous bone-replacement materials in minipigs 8 months after implantation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:606–613

    Article  PubMed  Google Scholar 

  25. Heufelder A, Hofbauer L (2002) HIV-Infektion und Knochengewebe. J Mineralstoffwechs 9:13–18

    Google Scholar 

  26. Jerosch J (2012) Kosten-Nutzen-Analyse einer lokalen Knochenbank. In: Jerosch J et al (Hrsg) Knochentransplantation. Knochenbank und klinische Anwendung von Bankknochen. Deutscher Ärzte-Verlag, Köln, S 35

    Google Scholar 

  27. Jung S, Kappe T, Bieger R et al (2013) Zulassung einer lokalen Knochenbank nach § 20 b und c AMG und Einführung einer Thermodesinfektion: Lohnt sich der Aufwand? Z Orthop Unfall 151:291–295

    Article  CAS  PubMed  Google Scholar 

  28. Kalfas IH (2001) Principles of bone healing. Neurosurg Focus 10:1–4

    Article  Google Scholar 

  29. Konermann A, Staubwasser M, Dirk C et al (2014) Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells. Int J Oral Maxillofac Surg 43:514–521

    Article  CAS  PubMed  Google Scholar 

  30. Kruse A, Jung RE, Nicholls F et al (2011) Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material. Clin Oral Implants Res 22:506–511

    Article  CAS  PubMed  Google Scholar 

  31. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  32. Kurien T, Pearson RG, Scammell BE (2013) Bone graft substitutes currently available in orthopaedic practice: The evidence for their use. Bone Joint J 95(B):583–597

    Article  PubMed  Google Scholar 

  33. Lementowski PW, Lucas P, Taddonio RF (2010) Acute and chronic complications of Intracortical Iliac crest bone grafting versus the traditional corticocancellous technique for spinal fusion surgery. Orthopedics. doi:10.3928/01477447-20100225-08

    PubMed  Google Scholar 

  34. Lerner T, Griefingholt H, Liljenqvist U (2009) Knochenersatzstoffe in der Skoliosechirurgie. Orthopade 38:181–188

    Article  CAS  PubMed  Google Scholar 

  35. Wise K‑U, Gresser JD, Wise DL et al (2000) Bioresorbable bone graft substitutes of different osteoconductivities: A histologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials 21:757–764

    Article  PubMed  Google Scholar 

  36. Nather A, Zheng S (2010) Evolution of allograft transplantation. In: Yusof A, Yusof N, Hilmy N (Hrsg) Allograft procurement, processing and transplantation. A comprehensive guide for tissue banks. World Scientific, Singapore, S 3

    Chapter  Google Scholar 

  37. Niedhart C (2010) Vor- und Nachteile der autologen Spongiosaplastik. Fortbild Osteol. doi:10.1007/978-3-642-05385-6_19

    Google Scholar 

  38. Niedhart C, Pingsmann A, Jürgens C et al (2003) Komplikationen nach Entnahme autologen Knochens aus dem ventralen und dorsalen Beckenkamm – eine prospektive, kontrollierte Studie. Z Orthop Ihre Grenzgeb 141:481–486

    Article  CAS  PubMed  Google Scholar 

  39. Offenbächer M, Ewert T, Sangha O et al (2003) Validation of a German version of the „Disabilities of Arm, Shoulder and Hand“ questionnaire (DASH-G). Z Rheumatol 62:168–177

    Article  PubMed  Google Scholar 

  40. Patel N, Best SM, Bonfield W et al (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13:1199–1206

    Article  CAS  PubMed  Google Scholar 

  41. Pruß PDA, Katthagen B‑D (2008) Muskuloskelettale Gewebebanken. Orthopade 37:749–755

    Article  Google Scholar 

  42. Reichert C, Gotz W, Reimann S et al (2013) Resorption behavior of a nanostructured bone substitute: In vitro investigation and clinical application. J Orofac Orthop 74:165–174

    Article  PubMed  Google Scholar 

  43. Reichert C, Wenghoefer M, Kutschera E et al (2014) Ridge preservation with synthetic nanocrystalline hydroxyapatite reduces the severity of gingival invaginations – a prospective clinical study. J Orofac Orthop 75:7–15

    Article  PubMed  Google Scholar 

  44. Rentsch C, Rentsch B, Scharnweber D et al (2012) Knochenersatz. Unfallchirurg 115:938–949

    Article  CAS  PubMed  Google Scholar 

  45. Rueger J (1998) Knochenersatzmittel: Heutiger Stand und Ausblick. Orthopade 27:72–79

    CAS  PubMed  Google Scholar 

  46. Rueger J, Hägele J, Lehmann W et al (2010) Knochenaufbau-Knochenersatzmaterialien. Orthopäd Unfallchir Up2date 5:315–332

    Article  Google Scholar 

  47. Rumpel E, Wolf E, Kauschke E et al (2006) The biodegradation of hydroxyapatite bone graft substitutes in vivo. Folia Morphol (Praha) 65:43–48

    CAS  Google Scholar 

  48. Shakibaie MB (2013) Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: A controlled clinical study. Int J Periodontics Restorative Dent 33:223–228

    Article  Google Scholar 

  49. Soldner E, Herr G (2001) Knochen, Knochentransplantate und Knochenersatzmaterialien. Trauma Berufskrankh 3:256–269

    Article  Google Scholar 

  50. Student (1908) The probable error of a mean. Biometrika 6(1):1–25

    Article  Google Scholar 

  51. Tadic D, Epple M (2004) A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25:987–994

    Article  CAS  PubMed  Google Scholar 

  52. Tamhane AC (1977) Multiple comparisons in model I one-way ANOVA with unequal variances. Commun Stat Theory Methods 6:15–32

    Article  Google Scholar 

  53. Tessier P, Kawamoto H, Posnick J et al (2005) Complications of harvesting autogenous bone grafts: A group experience of 20,000 cases. Plast Reconstr Surg 116:72S–73S (discussion 92S–94S)

    Article  CAS  PubMed  Google Scholar 

  54. Tian XB, Sun L, Yang SH et al (2008) Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty. Chin Med J 121:745–751

    CAS  PubMed  Google Scholar 

  55. Troedhan A, Schlichting I, Kurrek A et al (2014) Primary implant stability in augmented sinuslift-sites after completed bone regeneration: A randomized controlled clinical study comparing four subantrally inserted biomaterials. Sci Rep doi:10.1038/srep05877

    PubMed  Google Scholar 

  56. Xu W, Ganz C, Weber U et al (2011) Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model. Int J Nanomedicine 6:1543–1552

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xu W, Holzhuter G, Sorg H et al (2009) Early matrix change of a nanostructured bone grafting substitute in the rat. J Biomed Mater Res Part B Appl Biomater 91:692–699

    Article  PubMed  Google Scholar 

  58. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195

    Article  CAS  PubMed  Google Scholar 

  59. Zimmermann R, Gabl M, Lutz M et al (2003) Injectable calcium phosphate bone cement Norian SRS for the treatment of intra-articular compression fractures of the distal radius in osteoporotic women. Arch Orthop Trauma Surg 123:22–27

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kienast.

Ethics declarations

Interessenkonflikt

B. Kienast, H. Neumann, F. Brüning-Wolter, R. Wendlandt, R. Kasch und A.P. Schulz geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kienast, B., Neumann, H., Brüning-Wolter, F. et al. Nanostrukturiertes synthetisches Knochenersatzmaterial zur Behandlung von Knochendefekten. Trauma Berufskrankh 18, 308–318 (2016). https://doi.org/10.1007/s10039-016-0209-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-016-0209-7

Schlüsselwörter

Keywords

Navigation