Skip to main content
Log in

Knochenersatzstoffe in der Skoliosechirurgie

Bone substitutes in scoliosis surgery

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Bei spinalen Fusionsoperationen wird v. a. der resezierte lokale Knochen verwendet, um eine biologische Fusion zu erzielen. Häufig reicht dieser aber nicht aus und erfordert eine Augmentation. Die autologe Knochentransplantation gilt noch immer als der Goldstandard, birgt jedoch zusätzliches Komplikationspotenzial. Zudem ist die Verfügbarkeit autologen Knochens begrenzt. Alternativ stehen allogener Spenderknochen und inzwischen eine Vielzahl unterschiedlicher Knochenersatzstoffe bereit.

Die aktuell in der Skoliosechirurgie verwendeten Knochenersatzstoffe werden dargestellt, ihre klinische Relevanz wird anhand einer Literaturrecherche erläutert. Eigene Erfahrungen und klinische Praxis werden mit der Literatur verglichen und kritisch diskutiert. Die gerade in jüngerer Zeit steigende Zahl wissenschaftlicher Publikationen über Knochenersatzstoffe spiegelt das enorme Interesse und die Relevanz dieses Themas wider. In der Skoliosechirurgie werden in zunehmendem Maße Calciumphospatkeramiken kombiniert mit Knochenmarkaspirat eingesetzt.

Obwohl die autologe Knochentransplantation weiterhin der akzeptierte Standard zur Augmentation des lokalen Autografts in der Skoliosechirurgie ist, zeichnet sich ein eindeutiger Trend zur Verwendung von Knochenersatzstoffen ab.

Abstract

In spinal fusion procedures, the local bone that is resected serves as the base bone graft for attaining biological fusion. The local bone is frequently not sufficient and requires supplementary grafting. Autologous bone transplantation is still regarded as the gold standard but might cause additional complications; also, autograft resources are limited. Alternatively, allografts and a wide variety of different bone substitutes are available.

The bone substitutes currently used in scoliosis surgery are presented, and their clinical significance is elucidated by a review of the literature. Furthermore, our own experiences and clinical practice are compared with those in the literature and are critically discussed. The recently growing number of scientific publications reporting on bone substitutes reflects the immense interest and relevance of this issue. In scoliosis surgery, calcium phosphate ceramics together with bone marrow aspirate are increasingly applied.

Although harvesting of autologous bone continues to be the accepted standard to extend the local autograft in scoliosis surgery, there is a clear trend toward the use of bone substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. An HS, Lynch K, Toth J (1995) Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen and mixed grafts. J Spinal Disord 8: 131–135

    Article  PubMed  CAS  Google Scholar 

  2. Arrington ED, Smith WJ, Chambers HG et al (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 329: 300–309

    Article  PubMed  Google Scholar 

  3. Aurori BF, Weierman RJ, Lowell HA et al (1985) Pseudarthrosis after spinal fusion for scoliosis. A comparison of autogeneic and allogeneic bone grafts. Clin Orthop Relat Res 199: 153–158

    PubMed  Google Scholar 

  4. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20: 1055–1060

    Article  PubMed  CAS  Google Scholar 

  5. Barriga A, Diaz-De-Rada P, Barroso Jl et al (2004) Frozen cancellous bone allografts: positive cultures of implanted grafts in posterior fusions of the spine. Eur Spine J 13: 152–156

    Article  PubMed  CAS  Google Scholar 

  6. Betz RR (2002) Limitations of autograft and allograft: new synthetic solutions. Orthopedics 25: 561–570

    Google Scholar 

  7. Betz RR, Petrizzo AM, Kerner PJ et al (2006) Allograft versus no graft with a posterior multisegmented hook system for the treatment of idiopathic scoliosis. Spine 31: 121–127

    Article  PubMed  Google Scholar 

  8. Boden SD, Kang J, Sandhu H et al (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine 27: 2662–2673

    Article  PubMed  Google Scholar 

  9. Bridwell KH, O’brien MF, Lenke LG et al (1994) Posterior spinal fusion supplemented with only allograft bone in paralytic scoliosis. Does it work? Spine 19: 2658–2666

    PubMed  CAS  Google Scholar 

  10. Bucholz Rw (2002) Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res 240: 44–52

    Article  Google Scholar 

  11. Buck BE, Malinin TI, Brown MD (1989) Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res 240: 129–136

    PubMed  Google Scholar 

  12. Buck BE, Resnick L, Shah SM et al (1990) Human immunodeficiency virus cultured from bone. Implications for transplantation. Clin Orthop Relat Res 251: 249–253

    PubMed  Google Scholar 

  13. Cammisa FP Jr, Lowery G, Garfin SR et al (2004) Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 29: 660–666

    Article  PubMed  Google Scholar 

  14. Campbell DG, Li P (1999) Sterilization of HIV with irradiation: relevance to infected bone allografts. Aust N Z J Surg 69: 517–521

    Article  PubMed  CAS  Google Scholar 

  15. Cavagna R, Daculsi G, Bouler JM (1999) Macroporous calcium phosphate ceramic: a prospective study of 106 cases in lumbar spinal fusion. J Long Term Eff Med Implants 9: 403–412

    PubMed  CAS  Google Scholar 

  16. Cook SD, Dalton JE, Tan EH et al (1994) In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions. Spine 19: 1655–1663

    Article  PubMed  CAS  Google Scholar 

  17. Crawford MJ, Swenson Cl, Arnoczky SP et al (2004) Lyophilization does not inactivate infectious retrovirus in systemically infected bone and tendon allografts. Am J Sports Med 32: 580–586

    Article  PubMed  Google Scholar 

  18. Cunningham BW, Shimamoto N, Sefter JC et al (2002) Osseointegration of autograft versus osteogenic protein-1 in posterolateral spinal arthrodesis: emphasis on the comparative mechanisms of bone induction. Spine J 2: 11–24

    Article  PubMed  Google Scholar 

  19. Daculsi G, Passuti N (1990) Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 11: 86–87

    PubMed  CAS  Google Scholar 

  20. Delecrin J, Takahashi S, Gouin F et al (2000) A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine 25: 563–569

    Article  PubMed  CAS  Google Scholar 

  21. Dodd CA, Fergusson CM, Freedman L et al (1988) Allograft versus autograft bone in scoliosis surgery. J Bone Joint Surg Br 70: 431–434

    PubMed  CAS  Google Scholar 

  22. Drosos GI, Kazakos KI, Kouzoumpasis P et al (2007) Safety and efficacy of commercially available demineralised bone matrix preparations: a critical review of clinical studies. Injury 38(Suppl 4): 13–21

    Article  Google Scholar 

  23. Eastlund T (2006) Bacterial infection transmitted by human tissue allograft transplantation. Cell Tissue Bank 7: 147–166

    Article  PubMed  Google Scholar 

  24. Eggli PS, Muller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 232: 127–138

    PubMed  CAS  Google Scholar 

  25. Ehrler DM, Vaccaro AR (2000) The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res 371: 38–45

    Article  PubMed  Google Scholar 

  26. Epstein NE (2006) A preliminary study of the efficacy of Beta Tricalcium Phosphate as a bone expander for instrumented posterolateral lumbar fusions. J Spinal Disord Tech 19: 424–429

    Article  PubMed  Google Scholar 

  27. Erbe EM, Marx JG, Clineff TD et al (2001) Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 10(Suppl 2): 141–146

    Article  Google Scholar 

  28. Fabry G (1991) Allograft versus autograft bone in idiopathic scoliosis surgery: a multivariate statistical analysis. J Pediatr Orthop 11: 465–468

    PubMed  CAS  Google Scholar 

  29. Fernyhough JC, Schimandle JJ, Weigel MC et al (1992) Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion. Spine 17: 1474–1480

    Article  PubMed  CAS  Google Scholar 

  30. Fleming JE Jr, Cornell CN, Muschler GF (2000) Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am 31: 357–374

    Article  PubMed  Google Scholar 

  31. Gauthier O, Bouler JM, Aguado E et al (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19: 133–139

    Article  PubMed  CAS  Google Scholar 

  32. Goulet JA, Senunas LE, Desilva Gl et al (1997) Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res 339: 76–81

    Article  PubMed  Google Scholar 

  33. Gunzburg R, Szpalski M (2002) Use of a novel beta-tricalcium phosphate-based bone void filler as a graft extender in spinal fusion surgeries. Orthopedics 25: 591–595

    Google Scholar 

  34. Hing KA, Annaz B, Saeed S et al (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16: 467–475

    Article  PubMed  CAS  Google Scholar 

  35. Holmes R, Mooney V, Bucholz R et al (1984) A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop Relat Res 188: 252–262

    PubMed  CAS  Google Scholar 

  36. Ibrahim T, Stafford H, Esler CN et al (2004) Cadaveric allograft microbiology. Int Orthop 28: 315–318

    Article  PubMed  CAS  Google Scholar 

  37. Ilharreborde B, Morel E, Fitoussi F et al (2008) Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft. J Pediatr Orthop 28: 347–351

    PubMed  Google Scholar 

  38. Jones KC, Andrish J, Kuivila T et al (2002) Radiographic outcomes using freeze-dried cancellous allograft bone for posterior spinal fusion in pediatric idiopathic scoliosis. J Pediatr Orthop 22: 285–289

    Article  PubMed  Google Scholar 

  39. Jorgenson SS, Lowe TG, France J et al (1994) A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine 19: 2048–2053

    Article  PubMed  CAS  Google Scholar 

  40. Joshi A, Kostakis GC (2004) An investigation of post-operative morbidity following iliac crest graft harvesting. Br Dent J 196: 155–171

    Article  Google Scholar 

  41. Journeaux SF, Johnson N, Bryce Sl et al (1999) Bacterial contamination rates during bone allograft retrieval. J Arthroplasty 14: 677–681

    Article  PubMed  CAS  Google Scholar 

  42. Kanayama M, Hashimoto T, Shigenobu K et al (2006) A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine 31: 1067–1074

    Article  PubMed  Google Scholar 

  43. Kessler P, Thorwarth M, Bloch-Birkholz A et al (2005) Harvesting of bone from the iliac crest--comparison of the anterior and posterior sites. Br J Oral Maxillofac Surg 43: 51–56

    Article  PubMed  CAS  Google Scholar 

  44. Knapp DR Jr, Jones ET, Blanco JS et al (2005) Allograft bone in spinal fusion for adolescent idiopathic scoliosis. J Spinal Disord Tech 18(Suppl): 73–76

    Article  Google Scholar 

  45. Korovessis P, Koureas G, Zacharatos S et al (2005) Correlative radiological, self-assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur Spine J 14: 630–638

    Article  PubMed  Google Scholar 

  46. Le Huec JC, Lesprit E, Delavigne C et al (1997) Tri-calcium phosphate ceramics and allografts as bone substitutes for spinal fusion in idiopathic scoliosis as bone substitutes for spinal fusion in idiopathic scoliosis: comparative clinical results at four years. Acta Orthop Belg 63: 202–211

    Google Scholar 

  47. Lerner et al. (2008) A level-1 pilot study to evaluate ultraporous β-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis. Eur Spine J (zur Publikation angenommen)

  48. Lu JX, Flautre B, Anselme K et al (1999) Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10: 111–120

    Article  PubMed  CAS  Google Scholar 

  49. Ludwig SC, Boden SD (1999) Osteoinductive bone graft substitutes for spinal fusion: a basic science summary. Orthop Clin North Am 30: 635–645

    Article  PubMed  CAS  Google Scholar 

  50. Marthy S, Richter M (1998) Human immunodeficiency virus activity in rib allografts. J Oral Maxillofac Surg 56: 474–476

    Article  PubMed  CAS  Google Scholar 

  51. Mashoof AA, Siddiqui SA, Otero M et al (2002) Supplementation of autogenous bone graft with coralline hydroxyapatite in posterior spine fusion for idiopathic adolescent scoliosis. Orthopedics 25: 1073–1076

    PubMed  Google Scholar 

  52. Mclain RF, Fleming JE, Boehm CA et al (2005) Aspiration of osteoprogenitor cells for augmenting spinal fusion: comparison of progenitor cell concentrations from the vertebral body and iliac crest. J Bone Joint Surg Am 87: 2655–2661

    Article  PubMed  Google Scholar 

  53. Montgomery DM, Aronson DD, Lee Cl et al (1990) Posterior spinal fusion: allograft versus autograft bone. J Spinal Disord 3: 370–375

    PubMed  CAS  Google Scholar 

  54. Moro-Barrero L, Acebal-Cortina G, Suarez-Suarez M et al (2007) Radiographic analysis of fusion mass using fresh autologous bone marrow with ceramic composites as an alternative to autologous bone graft. J Spinal Disord Tech 20: 409–415

    Article  PubMed  Google Scholar 

  55. Muschik M, Ludwig R, Halbhubner S et al (2001) Beta-tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study. Eur Spine J 10(Suppl 2): 178–184

    Article  Google Scholar 

  56. Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79: 1699–1709

    PubMed  CAS  Google Scholar 

  57. Muschler GF, Matsukura Y, Nitto H et al (2005) Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 432: 242–251

    Article  PubMed  Google Scholar 

  58. Muschler GF, Midura RJ (2002) Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res 395: 66–80

    Article  PubMed  Google Scholar 

  59. Passuti N, Daculsi G, Rogez JM et al (1989) Macroporous calcium phosphate ceramic performance in human spine fusion. Clin Orthop Relat Res 248: 169–176

    PubMed  Google Scholar 

  60. Pitzen T, Kranzlein K, Steudel WI et al (2004) Complaints and findings at the iliac crest donor site following anterior cervical fusion. Zentralbl Neurochir 65: 7–12

    Article  PubMed  CAS  Google Scholar 

  61. Pouliquen JC, Noat M, Verneret C et al (1989) Coral substituted for bone grafting in posterior vertebral arthrodesis in children. Initial results. Rev Chir Orthop Reparatrice Appar Mot 75: 360–369

    PubMed  CAS  Google Scholar 

  62. Price CT, Connolly JF, Carantzas AC et al (2003) Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine 28: 793–798

    Article  PubMed  Google Scholar 

  63. Ransford AO, Morley T, Edgar MA et al (1998) Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J Bone Joint Surg Br 80: 13–18

    Article  PubMed  CAS  Google Scholar 

  64. Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247: 220–222

    Article  PubMed  CAS  Google Scholar 

  65. Sandhu HS, Boden SD (1998) Biologic enhancement of spinal fusion. Orthop Clin North Am 29: 621–631

    Article  PubMed  CAS  Google Scholar 

  66. Sandhu HS, Grewal HS, Parvataneni H (1999) Bone grafting for spinal fusion. Orthop Clin North Am 30: 685–698

    Article  PubMed  CAS  Google Scholar 

  67. Sandhu HS, Kanim LE, Kabo JM et al (1996) Effective doses of recombinant human bone morphogenetic protein-2 in experimental spinal fusion. Spine 21: 2115–2122

    Article  PubMed  CAS  Google Scholar 

  68. Sasso RC, Lehuec JC, Shaffrey C (2005) Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech 18(Suppl): 77–81

    Article  Google Scholar 

  69. Schimandle JH, Boden SD, Hutton WC (1995) Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine 20: 1326–1337

    Article  PubMed  CAS  Google Scholar 

  70. Schnurer SM, Gopp U, Kuhn KD et al (2003) Bone substitutes. Orthopade 32: 2–10

    Article  PubMed  CAS  Google Scholar 

  71. Sengupta DK, Truumees E, Patel CK et al (2006) Outcome of local bone versus autogenous iliac crest bone graft in the instrumented posterolateral fusion of the lumbar spine. Spine 31: 985–991

    Article  PubMed  Google Scholar 

  72. Skaggs Dl, Samuelson MA, Hale JM et al (2000) Complications of posterior iliac crest bone grafting in spine surgery in children. Spine 25: 2400–2402

    Article  PubMed  CAS  Google Scholar 

  73. Summers BN, Eisenstein SM (1989) Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br 71: 677–680

    PubMed  CAS  Google Scholar 

  74. Thalgott JS, Giuffre JM, Fritts K et al (2001) Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J 1: 131–137

    Article  PubMed  CAS  Google Scholar 

  75. Torwesten G, Braun M (1993) Cost analysis of a bone bank. Orthop Ihre Grenzgeb 131: 51–56

    Article  CAS  Google Scholar 

  76. Urist MR (1965) Bone: formation by autoinduction. Science 150: 893–899

    Article  PubMed  CAS  Google Scholar 

  77. Urist MR, Silverman BF, Buring K et al (1967) The bone induction principle. Clin Orthop Relat Res 53: 243–283

    Article  PubMed  CAS  Google Scholar 

  78. Vaccaro AR, Whang PG, Patel T et al (2008) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J 8: 457–465

    Article  PubMed  Google Scholar 

  79. Weinzapfel B, Son-Hing JP, Armstrong DG et al (2008) Fusion rates after thoracoscopic release and bone graft substitutes in idiopathic scoliosis. Spine 33: 1079–1083

    Article  PubMed  Google Scholar 

  80. Wippermann BW, Schratt HE, Steeg S et al (1997) Complications of spongiosa harvesting of the ilial crest. A retrospective analysis of 1,191 cases. Chirurg 68: 1286–1291

    Article  PubMed  CAS  Google Scholar 

  81. Woolf SK, Gross RH (2001) Perceptions of allograft safety and efficacy among spinal deformity surgeons. J Pediatr Orthop 21: 767–771

    Article  PubMed  CAS  Google Scholar 

  82. Xie Y, Chopin D, Morin C et al (2006) Evaluation of the osteogenesis and biodegradation of porous biphasic ceramic in the human spine. Biomaterials 27: 2761–2767

    Article  PubMed  CAS  Google Scholar 

  83. Yazici M, Asher MA (1997) Freeze-dried allograft for posterior spinal fusion in patients with neuromuscular spinal deformities. Spine 22: 1467–1471

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lerner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerner, T., Griefingholt, H. & Liljenqvist, U. Knochenersatzstoffe in der Skoliosechirurgie. Orthopäde 38, 181–188 (2009). https://doi.org/10.1007/s00132-008-1369-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-008-1369-3

Schlüsselwörter

Keywords

Navigation