Skip to main content
Log in

Radiologische Diagnostik der posttraumatischen Osteomyelitis

Radiological diagnostics of post-traumatic osteomyelitis

  • Übersichten
  • Published:
Trauma und Berufskrankheit

Zusammenfassung

Die bildgebende Diagnostik der Osteomyelitis beinhaltet eine Kombination aus radiologischen und nuklearmedizinischen Verfahren. Als Erstuntersuchung zeigt das Röntgenbild mögliche Knochenstrukturveränderungen, die Hinweise über Lokalisation und Ausdehnung des Entzündungsprozesses geben können. Das sensitivste Nachweisverfahren ist die PET-CT (Positronenemissionscomputertomographie). Sie ermöglicht eine zuverlässige Beurteilung der Ausdehnung und Lokalisation der knöchernen Infektion, den Nachweis von Satellitenherden und Weichteilinfektionen sowie die differenzialdiagnostische Abgrenzung zu Neoplasien. Allerdings ist das Verfahren im klinischen Alltag aufgrund der hohen Untersuchungskosten und der nur selektiven Verfügbarkeit speziellen Fragestellungen vorbehalten. Bei negativem FDG-PET-Befund (FDG: Fluordeoxyglukose) kann eine chronische Osteomyelitis nahezu ausgeschlossen werden. Die weiterführende Diagnostik erfolgt im klinischen Alltag mittels CT, Magnetresonanztomographie und den entsprechenden klinischen und laborchemischen Parametern. Falls damit keine sichere Befundlage erhalten wird, kann eine Knochenszintigraphie zur Diagnose führen.

Abstract

The imaging diagnostics of osteomyelitis contain a combination of radiological and nuclear medicine procedures. The conventional radiographic image as first choice examination shows structural changes of the bone and also can give information about localization and enlargement of an osseous infection. Positron emission tomography/computed tomography (PET/CT) is the most sensitive verification procedure. It allows a reliable verification of extent and localization of the bone infection, the proof of satellite foci and soft tissue infections as well as the differential diagnostic distinction from a neoplasia. However, PET/CT scans in the diagnostic workup of osteomyelitis are reserved for special issues due to the high examination costs and the usually limited availability. In cases of negative fluorodeoxyglucose (FDG) PET findings, a chronic osteomyelitis is almost ruled out. In daily practice further diagnostic procedures include besides clinical and laboratory findings imaging by CT and magnetic resonance imaging (MRI). If these procedures do not provide verified results, bone scintigraphy can lead to the final diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Aigner RM, Fueger GF, Vejda M (1996) Follow-up of osteomyelitis of infants with systemic serum parameters and bone scintigraphy. Nuklearmedizin 35:116–121

    PubMed  CAS  Google Scholar 

  2. Becker W (1995) The contribution of nuclear medicine to the patient with infection. Eur J Nucl Med 22:1195–1211

    Article  PubMed  CAS  Google Scholar 

  3. Becker W, Meller J (2001) The role of nuclear medicine in infection and inflammation. Lancet Infect Dis 1:326–333

    Article  PubMed  CAS  Google Scholar 

  4. Becker W, Borst U, Fischbach W et al (1989) Kinetic data of in-vivo labeled granulocytes in humans with a murine Tc-99m-labelled monoclonal antibody. Eur J Nucl Med 15:361–366

    Article  PubMed  CAS  Google Scholar 

  5. Bohndorf K (1996) Diagnostic imaging of acute and chronic osteomyelitis. Radiologe 36:786–794

    Article  PubMed  CAS  Google Scholar 

  6. Buhl T, Stentzer K, Hede A et al (2005) Bone infection in patients suspected of complicating osteomyelitis: the diagnostic value of dual isotope bone-granulocyte scintigraphy. Clin Physiol Funct Imaging 25:20–26

    Article  PubMed  Google Scholar 

  7. Connolly LP, Connolly SA, Drubach LA et al (2002) Acute hematogenous osteomyelitis of children: assessment of skeletal scintigraphy-based diagnosis in the era of MRI. J Nucl Med 43:1310–1316

    PubMed  Google Scholar 

  8. De Winter F, Vogelaers D, Gemmel F, Dierckx RA (2002) Promising role of 18-F-fluoro-D-deoxyglucose positron emission tomography in clinical infectious diseases. Eur J Clin Microbiol Infect Dis 21:247–257

    Article  Google Scholar 

  9. Ehara S (1997) Complications of skeletal trauma. Radiol Clin North Am 35:767–781

    PubMed  CAS  Google Scholar 

  10. Erdman WA, Tamburro F, Jayson HT et al (1991) Osteomyelitis: characteristics and pitfalls of diagnosis with MR imaging. Radiology 180:533–539

    PubMed  CAS  Google Scholar 

  11. Gemmel F, Dumarey N, Palestro CJ (2006) Radionuclide imaging of spinal infections. Eur J Nucl Med Mol Imaging 33:1226–1237

    Article  PubMed  Google Scholar 

  12. Gillams AR, Chaddha B, Carter AP (1996) MR appearances of the temporal evolution and resolution of infectious spondylitis. AJR Am J Roentgenol 166:903–907

    PubMed  CAS  Google Scholar 

  13. Glaser C, Matzko M, Reiser M (2000) Chronic infections of the skeletal system. Their imaging diagnosis. Radiologe 40:547–556

    Article  PubMed  CAS  Google Scholar 

  14. Goebel M, Rosa F, Tatsch K et al (2007) Diagnosis of chronic osteitis of the bones in the extremities. Relative value of F-18 FDG-PET. Unfallchirurg 110:859–866

    Article  PubMed  CAS  Google Scholar 

  15. Gold RH, Hawkins RA, Katz RD (1991) Bacterial osteomyelitis: findings on plain radiography, CT, MR, and scintigraphy. AJR Am J Roentgenol 157:365–370

    PubMed  CAS  Google Scholar 

  16. Gratz S, Dorner J, Oestmann JW et al (2000) 67Ga-citrate and 99Tcm-MDP for estimating the severity of vertebral osteomyelitis. Nucl Med Commun 21:111–120

    Article  PubMed  CAS  Google Scholar 

  17. Grey AC, Davies AM, Mangham DC et al (1998) The ‚penumbra sign‘ on T1-weighted MR imaging in subacute osteomyelitis: frequency, cause and significance. Clin Radiol 53:587–592

    Article  PubMed  CAS  Google Scholar 

  18. Gross T, Kaim AH, Regazzoni P, Widmer AF (2002) Current concepts in posttraumatic osteomyelitis: a diagnostic challenge with new imaging options. J Trauma 52:1210–1219

    Article  PubMed  Google Scholar 

  19. Guhlmann A, Brecht-Krauss D, Suger G et al (1998) Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 39:2145–2152

    PubMed  CAS  Google Scholar 

  20. Hahn K, Fischer S, Colarinha P et al (2001) Guidelines for bone scintigraphy in children. Eur J Nucl Med 28:BP42–47

    PubMed  CAS  Google Scholar 

  21. Hakim SG, Bruecker CW, Jacobsen H et al (2006) The value of FDG-PET and bone scintigraphy with SPECT in the primary diagnosis and follow-up of patients with chronic osteomyelitis of the mandible. Int J Oral Maxillofac Surg 35:809–816

    Article  PubMed  CAS  Google Scholar 

  22. Ishimori T, Saga T, Mamede M et al (2002) Increased (18)F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation. J Nucl Med 43:658–663

    PubMed  CAS  Google Scholar 

  23. Kaim A, Ledermann HP, Bongartz G et al (2000) Chronic post-traumatic osteomyelitis of the lower extremity: comparison of magnetic resonance imaging and combined bone scintigraphy/immunoscintigraphy with radiolabelled monoclonal antigranulocyte antibodies. Skeletal Radiol 29:378–386

    Article  PubMed  CAS  Google Scholar 

  24. Kaim AH, Gross T, Schulthess GK von (2002) Imaging of chronic posttraumatic osteomyelitis. Eur Radiol 12:1193–1202

    Article  PubMed  Google Scholar 

  25. Kaim AH, Weber B, Kurrer MO et al (2002) Autoradiographic quantification of 18F-FDG uptake in experimental soft-tissue abscesses in rats. Radiology 223:446–451

    Article  PubMed  Google Scholar 

  26. Koort JK, Makinen TJ, Knuuti J et al (2004) Comparative 18F-FDG PET of experimental Staphylococcus aureus osteomyelitis and normal bone healing. J Nucl Med 45:1406–1411

    PubMed  Google Scholar 

  27. Korner T, Kreusch T, Bohuslavizki KH et al (1997) Magnetic resonance imaging vs. three-dimensional scintigraphy in the diagnosis and monitoring of mandibular osteomyelitis. Mund Kiefer Gesichtschir 1:324–327

    Article  PubMed  CAS  Google Scholar 

  28. Ledermann HP, Kaim A, Bongartz G, Steinbrich W (2000) Pitfalls and limitations of magnetic resonance imaging in chronic posttraumatic osteomyelitis. Eur Radiol 10:1815–1823

    Article  PubMed  CAS  Google Scholar 

  29. Ledermann HP, Morrison WB, Schweitzer ME, Raikin SM (2002) Tendon involvement in pedal infection: MR analysis of frequency, distribution, and spread of infection. AJR Am J Roentgenol 179:939–947

    PubMed  Google Scholar 

  30. Lin WY, Tsai SC, Chao TH, Wang SJ (2001) Uptake of gallium-67 citrate in clean surgical incisions after colorectal surgery. Eur J Nucl Med 28:369–372

    Article  PubMed  CAS  Google Scholar 

  31. Lipman BT, Collier BD, Carrera GF et al (1998) Detection of osteomyelitis in the neuropathic foot: nuclear medicine, MRI and conventional radiography. Clin Nucl Med 23:77–82

    Article  PubMed  CAS  Google Scholar 

  32. Love C, Patel M, Lonner BS et al (2000) Diagnosing spinal osteomyelitis: a comparison of bone and Ga-67 scintigraphy and magnetic resonance imaging. Clin Nucl Med 25:963–977

    Article  PubMed  CAS  Google Scholar 

  33. Mason MD, Zlatkin MB, Esterhai JL et al (1989) Chronic complicated osteomyelitis of the lower extremity: evaluation with MR imaging. Radiology 173:355–359

    PubMed  CAS  Google Scholar 

  34. Meller J, Koster G, Liersch T et al (2002) Chronic bacterial osteomyelitis: prospective comparison of (18)F-FDG imaging with a dual-head coincidence camera and (111)In-labelled autologous leucocyte scintigraphy. Eur J Nucl Med Mol Imaging 29:53–60

    Article  PubMed  CAS  Google Scholar 

  35. Morrison WB, Schweitzer ME, Bock GW et al (1993) Diagnosis of osteomyelitis: utility of fat-suppressed contrast-enhanced MR imaging. Radiology 189:251–257

    PubMed  CAS  Google Scholar 

  36. Mumme T, Reinartz P, Alfer J et al (2005) Diagnostic values of positron emission tomography versus triple-phase bone scan in hip arthroplasty loosening. Arch Orthop Trauma Surg 125:322–329

    Article  PubMed  CAS  Google Scholar 

  37. Peters AM (1998) The use of nuclear medicine in infections. Br J Radiol 71:252–261

    PubMed  CAS  Google Scholar 

  38. Poirier JY, Garin E, Derrien C et al (2002) Diagnosis of osteomyelitis in the diabetic foot with a 99mTc-HMPAO leucocyte scintigraphy combined with a 99mTc-MDP bone scintigraphy. Diabetes Metab 28:485–490

    PubMed  CAS  Google Scholar 

  39. Remedios D, Valabhji J, Oelbaum R et al (1998) 99mTc-nanocolloid scintigraphy for assessing osteomyelitis in diabetic neuropathic feet. Clin Radiol 53:120–125

    Article  PubMed  CAS  Google Scholar 

  40. Romer W, Nomayr A, Uder M et al (2006) SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 47:1102–1106

    PubMed  Google Scholar 

  41. Sahlmann CO, Siefker U, Lehmann K, Meller J (2004) Dual time point 2-[18F]fluoro-2’-deoxyglucose positron emission tomography in chronic bacterial osteomyelitis. Nucl Med Commun 25:819–823

    Article  PubMed  Google Scholar 

  42. Schauwecker DS (1992) The scintigraphic diagnosis of osteomyelitis. AJR Am J Roentgenol 158:9–18

    PubMed  CAS  Google Scholar 

  43. Schiesser M, Stumpe KD, Trentz O et al (2003) Detection of metallic implant-associated infections with FDG PET in patients with trauma: correlation with microbiologic results. Radiology 226:391–398

    Article  PubMed  Google Scholar 

  44. Schmitz A, Kalicke T, Willkomm P et al (2000) Use of fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in assessing the process of tuberculous spondylitis. J Spinal Disord Tech 13:541–544

    Article  CAS  Google Scholar 

  45. Schwameis E, Abdolvahab F, Wurnig C (1996) Osteomyelitis. Clinical aspects, diagnosis and therapy. Radiologe 36:823–833

    Article  PubMed  CAS  Google Scholar 

  46. Seabold JE, Palestro CJ, Brown ML et al (1997) Procedure guideline for gallium scintigraphy in inflammation. Society of Nuclear Medicine. J Nucl Med 38:994–997

    PubMed  CAS  Google Scholar 

  47. Segreti J, Nelson JA, Trenholme GM (1998) Prolonged suppressive antibiotic therapy for infected orthopedic prostheses. Clin Infect Dis 27:711–713

    Article  PubMed  CAS  Google Scholar 

  48. Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action – implications for insulin resistance and diabetes mellitus. N Engl J Med 341:248–257

    Article  PubMed  CAS  Google Scholar 

  49. Stadler P, Bilohlavek O, Spacek M, Michalek P (2004) Diagnosis of vascular prosthesis infection with FDG-PET/CT. J Vasc Surg 40:1246–1247

    Article  PubMed  Google Scholar 

  50. Stumpe KD, Zanetti M, Weishaupt D et al (2002) FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol 179:1151–1157

    PubMed  Google Scholar 

  51. Temmerman OP, Raijmakers PG, Berkhof J et al (2006) Diagnostic accuracy and interobserver variability of plain radiography, subtraction arthrography, nuclear arthrography, and bone scintigraphy in the assessment of aseptic femoral component loosening. Arch Orthop Trauma Surg 126:316–323

    Article  PubMed  Google Scholar 

  52. Termaat MF, Raijmakers PG, Scholten HJ et al (2005) The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am 87:2464–2471

    Article  PubMed  CAS  Google Scholar 

  53. Tumeh SS, Aliabadi P, Seltzer SE et al (1988) Chronic osteomyelitis: the relative roles of scintigrams, plain radiographs, and transmission computed tomography. Clin Nucl Med 13:710–715

    Article  PubMed  CAS  Google Scholar 

  54. Widmer AF (2001) New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis [Suppl 2] 33:S94–106

    Google Scholar 

  55. Zhuang H, Sam JW, Chacko TK et al (2003) Rapid normalization of osseous FDG uptake following traumatic or surgical fractures. Eur J Nucl Med Mol Imaging 30:1096–1103

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bula-Sternberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bula-Sternberg, J., Zöphel, K., Kotzerke, J. et al. Radiologische Diagnostik der posttraumatischen Osteomyelitis. Trauma Berufskrankh 13 (Suppl 1), 3–11 (2011). https://doi.org/10.1007/s10039-011-1718-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10039-011-1718-z

Schlüsselwörter

Keywords

Navigation