Skip to main content
Log in

Diagnostik der chronischen Osteitis des Extremitätenskeletts

Stellenwert der F-18-FDG-PET

Diagnosis of chronic osteitis of the bones in the extremities

Relative value of F-18 FDG-PET

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die nichtinvasive Diagnostik bei chronischen Knocheninfektionen stellt noch immer eine Herausforderung dar. Als Goldstandard für die sichere Diagnose gilt der positive intraoperative mikrobiologische und/oder histologische Befund. Ziel der vorgelegten Studie war es, die Wertigkeit der Fluor-18-FDG-PET bei der Diagnostik der chronischen Osteitis am Patientengut einer Spezialabteilung für septisch-orthopädische Chirurgie zu evaluieren. Es sollte insbesondere die Frage beantwortet werden, ob die Befunde der FDG-PET mit den intraoperativ entnommenen Proben (Mikrobiologie, Histologie) korrelieren und welche Wertigkeit der Untersuchungsmethode im Vergleich zu Computertomographie (CT) und Magnetresonanztomographie (MRT) zukommt.

Material und Methoden

50 Patienten mit der Verdachtsdiagnose „chronische Osteitis des Extremitätenskeletts“ wurden präoperativ einer F-18-FDG-PET-Untersuchung unterzogen. Bei allen Patienten lag anamnestisch eine offene Fraktur und/oder eine vorangegangene Operation der betroffenen Extremität vor. Die Auswertung der FDG-PET-Befunde erfolgte verblindet, alle in die Studie aufgenommenen Patienten wurden in der Folge operiert. Die Ergebnisse der intraoperativ entnommenen histologischen und mikrobiologischen Proben wurden ebenso postoperativ mit den Ergebnissen der FDG-PET verglichen wie die zusätzlich erhobenen CT- (n=22) und MRT-Befunde (n=18). Schließlich wurden Sensitivität, Spezifität und Treffsicherheit für das jeweilige Verfahren bestimmt.

Ergebnisse

Postoperativ zeigten die Gewebeproben von 37 Patienten einen positiven mikrobiologischen und/oder histologischen Befund. Bei 13 Patienten konnte nach diesem Goldstandard eine Osteitis nicht nachgewiesen werden. 34 Patienten, deren mikrobiologischer und/oder histologischer Befund positiv ausfiel, wurden in der präoperativen FDG-PET-Befundung als richtig infektpositiv diagnostiziert. Es wurden 4 falsch-positive Befunde beobachtet. Falsch-negativ wurden 3, richtig-negativ 9 Patienten bewertet. Sensitivität, Spezifität und Treffsicherheit betrugen 92%, 69% bzw. 86% für das Gesamtkollektiv. Sensitivität, Spezifität und Treffsicherheit für die Computertomographie lagen bei 47%, 60% bzw. 50%, für die Magnetresonanztomographie bei 82%, 43% bzw. 67%.

Schlussfolgerung

Die F-18-FDG-PET ist ein vielversprechendes bildgebendes Verfahren in der Diagnostik der chronischen Osteitis mit hoher Sensitivität und Treffsicherheit. Bei negativem FDG-PET-Ergebnis kann eine chronische Osteitis nahezu ausgeschlossen werden. Nach den vorgelegten Ergebnissen ist das Verfahren den bildgebenden Verfahren CT und MRT hinsichtlich Sensitivität und Treffsicherheit überlegen. Der definitive Nachweis einer chronischen Osteitis erfolgt auch in Zukunft invasiv durch mikrobiologische und histologische Proben.

Abstract

Background

Noninvasive diagnosis continues to present a challenge in chronic bone infections. Positive intraoperative microbiological and/or histological results are regarded as the gold standard for confirmation of the diagnosis. The aim of the present study was to evaluate the value of F-18 FDG-PET in the diagnosis of chronic osteitis in the patients of a department devoted specifically to septic orthopaedic surgery. In particular, the study was intended to answer the question of whether the results of FDG-PET correlate with those found in intraoperatively removed biopsy specimens (microbiology, histology) and what value this method of investigation has relative to computed tomography (CT) and magnetic resonance imaging (MRI).

Methods

An F-18 FDG-PET examination was performed preoperatively in each of 50 patients with a suspected diagnosis of „chronic osteitis of bone/s in a limb“. All these patients had a history of an open fracture and/or a previous operation on the affected limb. The FDG-PET results were analysed blind. All patients enrolled in the study were subsequently operated on. After surgery, the results of histological and microbiological examination of the biopsy specimens taken intraoperatively were compared with the results of the FDG-PET and of CT (n=22) and MRI (n=18). Finally, the sensitivity, specificity and accuracy of each method were determined.

Results

Postoperatively the biopsy specimens from 37 patients yielded positive results in the microbiological and/or histological tests. According to this gold standard, then, osteitis was not present in 13 patients. In the preoperative FDG-PET report 34 of the patients whose microbiological and/or histological results were positive were correctly diagnosed as infection positive. In addition, 4 false-positive results were observed. False-negative results were recorded in 3 patients and true-negative results, in 9. The sensitivity and specificity were 92% and 69%, respectively, for the entire group of patients. The accuracy was 86%. The sensitivity, specificity and accuracy were 47%, 60% and 50%, respectively, for CT and 82%, 43% and 67%, respectively, for MRI.

Conclusion

F-18 FDG-PET is a promising diagnostic imaging method with high sensitivity and accuracy in the investigation of chronic osteitis. If the result of FDG-PET is negative chronic osteitis can be virtually excluded. The results presented suggest that it is superior to CT and MRI in sensitivity and accuracy. A definitive diagnosis of chronic osteitis will continue to require an invasive method in the future, in the form of removal of biopsy specimens for microbiological and histological tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Bakheet SM, Powe J (1998) Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med 28: 352–358

    Article  PubMed  CAS  Google Scholar 

  2. Becker W (1995) The contribution of nuclear medicine to the patient with infection. Eur J Nucl Med 22: 1195–1211

    Article  PubMed  CAS  Google Scholar 

  3. Chandnani VP, Beltran J, Morris CS et al. (1990) Acute experimental osteomyelitis and abscesses: detection with MR imaging versus CT. Radiology 174: 233–236

    PubMed  CAS  Google Scholar 

  4. Crim JR, Seeger LL (1994) Imaging evaluation of osteomyelitis. Crit Rev Diagn Imaging 35: 201–256

    PubMed  CAS  Google Scholar 

  5. Datz FL (1994) Indium-111-labeled leukocytes for the detection of infection: current status. Semin Nucl Med 24: 92–109

    Article  PubMed  CAS  Google Scholar 

  6. De Winter F, Van de WC, Vogelaers D et al. (2001) Fluorine-18 fluorodeoxyglucose-position emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am 83A: 651–660

    Google Scholar 

  7. De Winter F, Vogelaers D, Gemmel F, Dierckx RA (2002) Promising role of 18-F-fluoro-Ddeoxyglucose positron emission tomography in clinical infectious diseases. Eur J Clin Microbiol Infect Dis 21: 247–257

    Article  CAS  Google Scholar 

  8. Delbeke D (1999) Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 40: 591–603

    PubMed  CAS  Google Scholar 

  9. Dirschl DR, Almekinders LC (1993) Osteomyelitis. Common causes and treatment recommendations. Drugs 45: 29–43

    PubMed  CAS  Google Scholar 

  10. Fantone JC, Ward PA (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107: 395–418

    PubMed  CAS  Google Scholar 

  11. Flivik G, Sloth M, Rydholm U et al. (1993) Technetium-99m-nanocolloid scintigraphy in orthopedic infections: a comparison with indium-111-labeled leukocytes. J Nucl Med 34: 1646–1650

    PubMed  CAS  Google Scholar 

  12. Glaser C, Matzko M, Reiser M (2000) Chronic infections of the skeletal system. Their imaging diagnosis. Radiologe 40: 547–556

    Article  PubMed  CAS  Google Scholar 

  13. Gross T, Kaim AH, Regazzoni P, Widmer AF (2002) Current concepts in posttraumatic osteomyelitis: a diagnostic challenge with new imaging options. J Trauma 52: 1210–1219

    PubMed  Google Scholar 

  14. Guhlmann A, Brecht-Krauss D, Suger G et al. (1998) Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 206: 749–754

    PubMed  CAS  Google Scholar 

  15. Guhlmann A, Brecht-Krauss D, Suger G et al. (1998) Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 39: 2145–2152

    PubMed  CAS  Google Scholar 

  16. Ichiya Y, Kuwabara Y, Sasaki M et al. (1996) FDG-PET in infectious lesions: The detection and assessment of lesion activity. Ann Nucl Med 10: 185–191

    Article  PubMed  CAS  Google Scholar 

  17. 18. Kaim A, Maurer T, Ochsner P et al. (1997) Chronic complicated osteomyelitis of the appendicular skeleton: diagnosis with technetium-99m labelled monoclonal antigranulocyte antibody-immunoscintigraphy. Eur J Nucl Med 24: 732–738

    PubMed  CAS  Google Scholar 

  18. 17. Kaim A, Ledermann HP, Bongartz G et al. (2000) Chronic post-traumatic osteomyelitis of the lower extremity: comparison of magnetic resonance imaging and combined bone scintigraphy/immunoscintigraphy with radiolabelled monoclonal antigranulocyte antibodies. Skeletal Radiol 29: 378–386

    Article  PubMed  CAS  Google Scholar 

  19. Kalicke T, Schmitz A, Risse JH et al. (2000) Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med 27: 524–528

    Article  PubMed  CAS  Google Scholar 

  20. Kessler S, Lingg G (1998) Osteomyelitis-imaging methods and their value. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 169: 105–114

    Article  PubMed  CAS  Google Scholar 

  21. Krznaric E, Roo MD, Verbruggen A et al. (1996) Chronic osteomyelitis: diagnosis with technetium-99m-d, l-hexamethylpropylene amine oxime labelled leucocytes. Eur J Nucl Med 23: 792–797

    Article  PubMed  CAS  Google Scholar 

  22. Kubota R, Yamada S, Kubota K et al. (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33: 1972–1980

    PubMed  CAS  Google Scholar 

  23. Ledermann HP, Kaim A, Bongartz G, Steinbrich W (2000) Pitfalls and limitations of magnetic resonance imaging in chronic posttraumatic osteomyelitis. Eur Radiol 10: 1815–1823

    Article  PubMed  CAS  Google Scholar 

  24. Morrison WB, Schweitzer ME, Wapner KL et al. (1995) Osteomyelitis in feet of diabetics: clinical accuracy, surgical utility, and cost-effectiveness of MR imaging. Radiology 196: 557–564

    PubMed  CAS  Google Scholar 

  25. Norden C, Nelson JD, Mader JT, Calandra GB (1992) Evaluation of new anti-infective drugs for the treatment of infections of prosthetic hip joints. Clin Infect Dis (Suppl 1) 15: S177–S181

    Google Scholar 

  26. Ochsner PE, Sokhegyi A, Petralli C (1990) The value of computerized tomography in the assessment of chronic osteomyelitis. A radiological, histological and clinical correlation study. Z Orthop Ihre Grenzgeb 128: 313–318

    PubMed  CAS  Google Scholar 

  27. Palestro CJ, Torres MA (1997) Radionuclide imaging in orthopedic infections. Semin Nucl Med 27: 334–345

    Article  PubMed  CAS  Google Scholar 

  28. Perry M (1996) Erythrocyte sedimentation rate and C reactive protein in the assessment of suspected bone infection – are they reliable indices? J R Coll Surg Edinb 41: 116–118

    PubMed  CAS  Google Scholar 

  29. Peters AM (1998) The use of nuclear medicine in infections. Br J Radiol 71: 252–261

    PubMed  CAS  Google Scholar 

  30. Roesgen M, Hierholzer G, Hax PM (1989) Post-traumatic osteomyelitis. Pathophysiology and management. Arch Orthop Trauma Surg 108: 1–9

    Article  PubMed  CAS  Google Scholar 

  31. Salanova V, Markand O, Worth R (1999) Longitudinal follow-up in 145 patients with medically refractory temporal lobe epilepsy treated surgically between 1984 and 1995. Epilepsia 40: 1417–1423

    Article  PubMed  CAS  Google Scholar 

  32. Sammak B, Abd EB, Shahed M al et al. (1999) Osteomyelitis: a review of currently used imaging techniques. Eur Radiol 9: 894–900

    Article  PubMed  CAS  Google Scholar 

  33. Sanzen L, Sundberg M (1997) Periprosthetic low-grade hip infections. Erythrocyte sedimentation rate and C-reactive protein in 23 cases. Acta Orthop Scand 68: 461–465

    Article  PubMed  CAS  Google Scholar 

  34. Seabold JE, Nepola JV (1999) Imaging techniques for evaluation of postoperative orthopedic infections. Q J Nucl Med 43: 21–28

    PubMed  CAS  Google Scholar 

  35. Seabold JE, Palestro CJ, Brown ML et al. (1997) Procedure guideline for gallium scintigraphy in inflammation. J Nucl Med 38: 994–997

    PubMed  CAS  Google Scholar 

  36. Segreti J, Nelson JA, Trenholme GM (1998) Prolonged suppressive antibiotic therapy for infected orthopedic prostheses. Clin Infect Dis 27: 711–713

    PubMed  CAS  Google Scholar 

  37. Seltzer SE (1984) Value of computed tomography in planning medical and surgical treatment of chronic osteomyelitis. J Comput Assist Tomogr 8: 482–487

    Article  PubMed  CAS  Google Scholar 

  38. Shih LY, Wu JJ, Yang DJ (1987) Erythrocyte sedimentation rate and C-reactive protein values in patients with total hip arthroplasty. Clin Orthop 238–246

  39. Spangehl MJ, Younger AS, Masri BA, Duncan CP (1998) Diagnosis of infection following total hip arthroplasty. Instr Course Lect 47: 285–295

    PubMed  CAS  Google Scholar 

  40. Stumpe KD, Dazzi H, Schaffner A, Schulthess GK von (2000) Infection imaging using wholebodyFDG-PET. Eur J Nucl Med 27: 822–832

    Article  PubMed  CAS  Google Scholar 

  41. Sugawara Y, Braun DK, Kison PV et al. (1998) Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med 25: 1238–1243

    Article  PubMed  CAS  Google Scholar 

  42. Sugawara Y, Gutowski TD, Fisher SJ et al. (1999) Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, L-methionine, 67Ga-citrate, and 125I-HSA. Eur J Nucl Med 26: 333–341

    Article  PubMed  CAS  Google Scholar 

  43. Totty WG (1989) Radiographic evaluation of osteomyelitis using magnetic resonance imaging. Orthop Rev 18: 587–592

    PubMed  CAS  Google Scholar 

  44. Tumeh SS, Aliabadi P, Seltzer SE et al. (1988) Chronic osteomyelitis: the relative roles of scintigrams, plain radiographs, and transmission computed tomography. Clin Nucl Med 13: 710–715

    Article  PubMed  CAS  Google Scholar 

  45. Tumeh SS, Aliabadi P, Weissman BN, McNeil BJ (1987) Disease activity in osteomyelitis: role of radiography. Radiology 165: 781–784

    PubMed  CAS  Google Scholar 

  46. Widmer AF (2001) New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis (Suppl 2) 33: 94–106

    Article  Google Scholar 

  47. Won HJ, Chang KH, Cheon JE et al. (1999) Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. J Neuroradiol 20: 593–599

    CAS  Google Scholar 

  48. Yamada S, Kubota K, Kubota R et al. (1995) High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 36: 1301–1306

    PubMed  CAS  Google Scholar 

  49. Zhuang H, Duarte PS, Pourdehand M et al. (2000) Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med 25: 281–284

    Article  PubMed  CAS  Google Scholar 

  50. Zimmerli W (1995) Role of antibiotics in the treatment of infected joint prosthesis. Orthopade 24: 308–313

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.H. Kirschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goebel, M., Rosa, F., Tatsch, K. et al. Diagnostik der chronischen Osteitis des Extremitätenskeletts. Unfallchirurg 110, 859–866 (2007). https://doi.org/10.1007/s00113-007-1302-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-007-1302-y

Schlüsselwörter

Keywords

Navigation