Skip to main content
Log in

The unique dynamics of a bed of dry granular material in a vertical cylinder rotating at a constant speed

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The unique behavior of a bed of monodispersed dry granular matter confined in a rotating vertical cylinder has been investigated using DEM. At a constant rotational speed, the concave free surface shape exhibits an apparent similarity with the hydrodynamic counterpart of the same problem; but there are some unique differences arising from the particulate nature of the medium. In the rotating granular bed, the free surface profile is independent of the density and the size of the particles, but the local gradient of the free surface is not independent of the rotational speed. The results of a simulated experiment exhibit excellent matching with the free surface profiles obtained computationally and thus establish the efficacy of DEM in simulating the rigid body rotation of a particulate medium. However, the simulation results strongly suggest that though globally the bed behavior resembles solid body rotation, locally, the motion of the particles and their distribution is influenced by the discrete nature of the medium.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Andreotti B, Forterre Y, Pouliquen O.P.: Granular Media: Between Fluid and Solid. (2013)

  2. Nott, K.R.P.R.: An introduction to Granular Flow. Cambride University Press (2008)

  3. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: The physics of granular materials. Phys. Today 49, 32–38 (1996). https://doi.org/10.1063/1.881494

    Article  Google Scholar 

  4. Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102142

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Duran, J., Behringer, R.P.: Sands, powders, and grains: an introduction to the physics of granular materials. Phys. Today. 54, 63 (2001)

    Google Scholar 

  6. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech 32(5), 55–91 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Rapaport, D.C.: Radial and axial segregation of granular matter in a rotating cylinder: a simulation study. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75, 1–11 (2007). https://doi.org/10.1103/PhysRevE.75.031301

    Article  Google Scholar 

  8. Gray, J.M.N.T.: Particle segregation in dense granular flows. Annu. Rev. Fluid Mech. 50, 407–433 (2018). https://doi.org/10.1146/annurev-fluid-122316-045201

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Delannay, R., Valance, A., Mangeney, A., Roche, O., Richard, P.: Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D. Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/50/5/053001

    Article  Google Scholar 

  10. Chanson, H., Jarny, S., Coussot, P.: Dam break wave of thixotropic fluid. J. Hydraul. Eng. 132, 280–293 (2006). https://doi.org/10.1061/(ASCE)0733-9429(2006)132:3(280)

    Article  Google Scholar 

  11. Corwin, E.I., Jaeger, H.M., Nagel, S.R.: Structural signature of jamming in granular media. Nature 435, 1075–1078 (2005). https://doi.org/10.1038/nature03698

    Article  ADS  Google Scholar 

  12. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006). https://doi.org/10.1038/nature04801

    Article  ADS  Google Scholar 

  13. Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 2008(40), 1–24 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102142

    Article  MathSciNet  MATH  Google Scholar 

  14. Weinhart, T., Hartkamp, R., Thornton, A.R., Luding, S.: Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids. 25, 1–44 (2013). https://doi.org/10.1063/1.4812809

    Article  Google Scholar 

  15. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies (1979)

  16. Coetzee, C.J.: Review: calibration of the discrete element method (2017)

  17. O’Sullivan, C.: Particle-based discrete element modeling: geomechanics perspective. Int. J. Geomech. 11, 449–464 (2011). https://doi.org/10.1061/(asce)gm.1943-5622.0000024

    Article  Google Scholar 

  18. Govender, I.: Granular flows in rotating drums: a rheological perspective. Miner. Eng. 92, 168–175 (2016). https://doi.org/10.1016/j.mineng.2016.03.021

    Article  Google Scholar 

  19. Arntz, M.M.H.D.: Modeling of particle segregation in a rotating drum (2010)

  20. Combarros, M., Feise, H.J., Zetzener, H., Kwade, A.: Segregation of particulate solids: experiments and DEM simulations. Particuology. 12, 25–32 (2014). https://doi.org/10.1016/j.partic.2013.04.005

    Article  Google Scholar 

  21. Ottino, J.M., Khakhar, D.: V: M Ixing and S Egregation of G Ranular. Annu. Rev. Fluid Mech. 32, 55–91 (2000)

    Article  ADS  Google Scholar 

  22. Clément, E., Rajchenbach, J., Duran, J.: Mixing of a granular material in a bidimensional rotating drum. EPL 30, 7–12 (1995). https://doi.org/10.1209/0295-5075/30/1/002

    Article  ADS  Google Scholar 

  23. D’Ortona, U., Thomas, N., Lueptow, R.M.: Recirculation cells for granular flow in cylindrical rotating tumblers. Phys. Rev. E. 97, 1–13 (2018). https://doi.org/10.1103/PhysRevE.97.052904

    Article  Google Scholar 

  24. Xiao, Y.L., Specht, E., Mellmann, J.: Experimental study of the lower and upper angles of repose of granular materials in rotating drums. Powder Technol. 154, 125–131 (2005). https://doi.org/10.1016/j.powtec.2005.04.040

    Article  Google Scholar 

  25. Gray, J.M.N.T.: Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 1–29 (2001). https://doi.org/10.1017/S0022112001004736

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Hajra, S.K., Khakhar, D.V.: Radial mixing of granular materials in a rotating cylinder: experimental determination of particle self-diffusivity. Phys. Fluids. (2005). https://doi.org/10.1063/1.1825331

    Article  MATH  Google Scholar 

  27. Khakhar, D.V., McCarthy, J.J., Shinbrot, T., Ottino, J.M.: Transverse flow and mixing of granular materials in a rotating cylinder. Phys. Fluids. 9, 31–43 (1997). https://doi.org/10.1063/1.869172

    Article  ADS  Google Scholar 

  28. Venier, C.M., Damián, S.M., Bertone, S.E., Puccini, G.D., Risso, J.M., Nigro, N.M.: Discrete and continuum approaches for modeling solids motion inside a rotating drum at different regimes. Appl. Sci. 11, 1–20 (2021). https://doi.org/10.3390/app112110090

    Article  Google Scholar 

  29. Liu, Y., Gonzalez, M., Wassgren, C.: Modeling granular material blending in a rotating drum using a finite element method and advection-diffusion equation multiscale model. AIChE J. 64, 3277–3292 (2018). https://doi.org/10.1002/aic.16179

    Article  Google Scholar 

  30. Cleary, P.W.: Predicting charge motion , power draw , segregation and wear in ball mills using discrete element methods. Miner. Eng. 1061–1080 (1998)

  31. Utili, S., Zhao, T., Houlsby, G.T.: 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng. Geol. 186, 3–16 (2015). https://doi.org/10.1016/j.enggeo.2014.08.018

    Article  Google Scholar 

  32. Mellmann, J.: The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technol. 118, 251–270 (2001). https://doi.org/10.1016/S0032-5910(00)00402-2

    Article  Google Scholar 

  33. Cross, M.: The transverse motion of solids moving through rotary kilns. Powder Technol. 22, 187–190 (1979). https://doi.org/10.1016/0032-5910(79)80025-X

    Article  Google Scholar 

  34. Boateng, A.A., Barr, P.V.: Modelling of particle mixing and segregation in the transverse plane of a rotary kiln. Chem. Eng. Sci. 51, 4167–4181 (1996). https://doi.org/10.1016/0009-2509(96)00250-3

    Article  Google Scholar 

  35. Henein, H., Brimacombe, J.K., Watkinson, A.P.: Experimental study of transverse bed motion in rotary kilns. Metall. Trans. B. 14, 191–205 (1983). https://doi.org/10.1007/BF02661016

    Article  Google Scholar 

  36. Metcalfe, G., Shinbrot, T., McCarthy, J.J., Ottino, J.M.: Avalanche mixing of granular solids. Nature 374, 39–41 (1995). https://doi.org/10.1038/374039a0

    Article  ADS  Google Scholar 

  37. Lehmberg, J., Hela, M., Schugerl, K.: Transverse mixing and heat transfer in horizontal rotary drunl reactors. Powder Technol. 18, 149–163 (1977)

    Article  Google Scholar 

  38. Vavrek, M.E., Baxter, G.W.: Surface shape of a spinning bucket of sand. Phys. Rev. E. 50, 3 (1994). https://doi.org/10.1103/PhysRevE.50.R3353

    Article  Google Scholar 

  39. Bouchaud, J.-P., Cates, M.E., Prakash, J.R., Edwards, S.F.: A model for the dynamics of sandpile surfaces. J. Phys. I(4), 1383–1410 (1994). https://doi.org/10.1051/JP1:1994195

    Article  Google Scholar 

  40. Mehta, A., Luck, J.M., Needs~, R.J.: Dynamics of sandpiles: physical mechanisms, coupled stochastic equations, and alternative universality classes. Phys. Rev. E. 53, (1996)

  41. Yoon, S., Eom, B.H., Lee, J., Yu, I.: Circular kinks on the surface of granular material rotated in a tilted spinning bucket. Phys. Rev. Lett. 82, 4639–4642 (1999). https://doi.org/10.1103/PhysRevLett.82.4639

    Article  ADS  Google Scholar 

  42. Lee, C.H., Huang, Z., Yu, M.L.: Collapse of submerged granular columns in loose packing: Experiment and two-phase flow simulation. Phys. Fluids. (2018). https://doi.org/10.1063/1.5050994

    Article  Google Scholar 

  43. Goddard, J.D.: Continuum modeling of granular media. Appl. Mech. Rev. (2014). https://doi.org/10.1115/1.4026242

    Article  Google Scholar 

  44. Breard, E.C.P., Dufek, J., Roche, O.: Continuum modeling of pressure-balanced and fluidized granular flows in 2-D: comparison with glass bead experiments and implications for concentrated pyroclastic density currents. J. Geophys. Res. Solid Earth. 124, 5557–5583 (2019). https://doi.org/10.1029/2018JB016874

    Article  ADS  Google Scholar 

  45. Sperl, M.: Experiments on corn pressure in silo cells - translation and comment of Janssen’s paper from 1895. Granul. Matter. 8, 59–65 (2006). https://doi.org/10.1007/s10035-005-0224-z

    Article  MATH  Google Scholar 

  46. Landry, J.W., Grest, G.S., Silbert, L.E., Plimpton, S.J.: Confined granular packings: structure, stress, and forces. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 67, 9 (2003). https://doi.org/10.1103/PhysRevE.67.041303

    Article  Google Scholar 

  47. Matuttis, H.G., Luding, S., Herrmann, H.J.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109, 278–292 (2000). https://doi.org/10.1016/S0032-5910(99)00243-0

    Article  Google Scholar 

  48. Burman, B.C., Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 30, 331–336 (1980). https://doi.org/10.1680/geot.1980.30.3.331

    Article  Google Scholar 

  49. Elyashiv, H., Bookman, R., Siemann, L., Brink, U.T., Huhn, K.: Numerical characterization of cohesive and non-cohesive ‘sediments’ under different consolidation states using 3d dem triaxial experiments. Processes 8, 1–24 (2020). https://doi.org/10.3390/pr8101252

    Article  Google Scholar 

  50. Kermani, E., Qiu, T., Li, T.: Simulation of collapse of granular columns using the discrete element method. Int. J. Geomech. (2015). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000467

    Article  Google Scholar 

  51. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259–268 (2021). https://doi.org/10.1115/1.4009973

    Article  MathSciNet  MATH  Google Scholar 

  52. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (2021). https://doi.org/10.1115/1.4010702

    Article  MathSciNet  MATH  Google Scholar 

  53. Kumar, R., Patel, C.M., Jana, A.K., Gopireddy, S.R.: Prediction of hopper discharge rate using combined discrete element method and artificial neural network. Adv. Powder Technol. 29, 2822–2834 (2018). https://doi.org/10.1016/j.apt.2018.08.002

    Article  Google Scholar 

  54. O’Sullivan, C.: Particulate Discrete Element Modelling. (2014)

  55. Kloss, C., Goniva, C.: LIGGGHTS - open source discrete element simulations of granular materials based on lammps. Suppl. Proc. Mater. Fabr. Prop. Charact. Model. 2, 781–788 (2011). https://doi.org/10.1002/9781118062142.ch94

    Article  Google Scholar 

  56. Barrios, G.K.P., Carvalho, R.M.D., Kwade, A., Marcelo, L.: Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol. 248, 84–93 (2013). https://doi.org/10.1016/j.powtec.2013.01.063

    Article  Google Scholar 

  57. Kerswell, R.R.: Dam break with Coulomb friction: A model for granular slumping? Phys. Fluids. 17, 1–16 (2005). https://doi.org/10.1063/1.1870592

    Article  MathSciNet  MATH  Google Scholar 

  58. Lacaze, L., Phillips, J.C., Kerswell, R.R.: Planar collapse of a granular column: Experiments and discrete element simulations. Phys. Fluids. (2008). https://doi.org/10.1063/1.2929375

    Article  MATH  Google Scholar 

  59. Staron, L., Hinch, E.J.: Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 1–27 (2005). https://doi.org/10.1017/S0022112005006415

    Article  ADS  MATH  Google Scholar 

  60. Çengel, Y.A., Cimbala, J.M.: Fluid Mechanics A Fundamental Approach. (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Das, P.K. The unique dynamics of a bed of dry granular material in a vertical cylinder rotating at a constant speed. Granular Matter 25, 29 (2023). https://doi.org/10.1007/s10035-023-01319-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01319-w

Keywords

Navigation