Skip to main content
Log in

Evolution of a contact force network in a 2D granular assembly: an examination using neutron diffraction

  • Brief Communication
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Results from an experiment involving the measurement of individual particle stresses in a two-dimensional mono-disperse assembly of 579 ball bearings are presented. Using a combination of neutron radiography and strain scanning techniques, the full bi-axial stress state was obtained for each particle from which the full contact force network could be established. The evolution of this network was examined over a series of five monotonically increasing loads. Significant levels of inhomogeneity were observed in the form of prominent force chains that showed complex interaction with regions of order and disorder within the assembly. A reduction in the level of inhomogeneity with increasing load was also observed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotechnica 7(1), 1–13 (2012)

    Article  Google Scholar 

  2. Andrade, J.E., Avila, C.F.: Granular element method (gem): linking inter-particle forces with macroscopic loading. Granular Matter 14(1), 51–61 (2012)

    Article  Google Scholar 

  3. Brodu, N., Dijksman, J.A., Behringer, R.P.: Spanning the scales of granular materials through microscopic force imaging. Nat. commun. 6, 6361 (2015)

    Article  ADS  Google Scholar 

  4. Brujić, J., Edwards, S.F., Hopkinson, I., Makse, H.A.: Measuring the distribution of interdroplet forces in a compressed emulsion system. Phys. A Stat. Mech. Appl. 327(3–4), 201–212 (2003)

    Article  Google Scholar 

  5. Cates, M., Wittmer, J., Bouchaud, J.P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81(9), 1841 (1998)

    Article  ADS  Google Scholar 

  6. Fitzpatrick, M.E., Lodini, A.: Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation. CRC Press, Hoboken (2003)

    Book  Google Scholar 

  7. Geng, J., Reydellet, G., Clément, E., Behringer, R.: Green’s function measurements of force transmission in 2d granular materials. Phys. D Nonlinear Phenomena 182(3–4), 274–303 (2003)

    Article  ADS  Google Scholar 

  8. Hall, S.A., Wright, J., Pirling, T., Andò, E., Hughes, D.J., Viggiani, G.: Can intergranular force transmission be identified in sand? Granular Matter 13(3), 251–254 (2011)

    Article  Google Scholar 

  9. Hendriks, J., Gregg, A., Jackson, R., Wensrich, C., Wills, A., Tremsin, A., Shinohara, T., Luzin, V., Kirstein, O.: Tomographic reconstruction of triaxial strain fields from bragg-edge neutron imaging. Phys. Rev. Mater. 3(11), 113803 (2019)

    Article  Google Scholar 

  10. Higo, Y., Oka, F., Sato, T., Matsushima, Y., Kimoto, S.: Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus x-ray ct with digital image correlation. Soils Foundations 53(2), 181–198 (2013)

    Article  Google Scholar 

  11. Howell, D.W., Behringer, R., Veje, C.: Fluctuations in granular media Chaos: an Interdisciplinary. J. Nonlinear Sci. 9(3), 559–572 (1999)

    MATH  Google Scholar 

  12. Hurley, R., Hall, S., Andrade, J., Wright, J.: Quantifying interparticle forces and heterogeneity in 3d granular materials. Phys. Rev. Lett. 117(1), 098005 (2016)

    Article  ADS  Google Scholar 

  13. Hurley, R., Marteau, E., Ravichandran, G., Andrade, J.E.: Extracting inter-particle forces in opaque granular materials: beyond photoelasticity. J. Mech. Phys. Solids 63, 154–166 (2014)

    Article  ADS  Google Scholar 

  14. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079 (2005)

    Article  ADS  Google Scholar 

  15. Peters, J., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005)

    Article  ADS  Google Scholar 

  16. Salvatore, E., Andò, E., Modoni, G., Viggiani, G.: Micromechanical study of cyclically loaded sands with x-ray microtomography and digital image correlation. Proc. Eng. 158, 92–97 (2016)

    Article  Google Scholar 

  17. Shertzer, R.H., et al.: Fabric tensors and effective properties of granular materials with application to snow. Ph.D. thesis, Montana State University-Bozeman, College of Engineering (2011)

  18. Upadhyaya, G.: Powder Metallurgy Technology. Cambridge Int Science Publishing, Cambridge (1997)

    Google Scholar 

  19. Watanabe, Y., Lenoir, N., Otani, J., Nakai, T.: Displacement in sand under triaxial compression by tracking soil particles on x-ray ct data. Soils Foundations 52(2), 312–320 (2012)

    Article  Google Scholar 

  20. Wensrich, C.: Boundary structure in dense random packing of monosize spherical particles. Powder Technol. 219, 118–127 (2012)

    Article  Google Scholar 

  21. Wensrich, C.: Stress, stress-asymmetry and contact moments in granular matter. Granular Matter 16(4), 597–608 (2014)

    Article  Google Scholar 

  22. Wensrich, C., Kisi, E., Luzin, V.: Non-contact stress measurement in granular materials via neutron and x-ray diffraction: theoretical foundations. Granular Matter 15(3), 275–286 (2013)

    Article  Google Scholar 

  23. Wensrich, C., Kisi, E., Luzin, V., Garbe, U., Kirstein, O., Smith, A., Zhang, J.: Force chains in monodisperse spherical particle assemblies: three-dimensional measurements using neutrons. Phys. Rev. E 90(4), 042203 (2014)

    Article  ADS  Google Scholar 

  24. Wensrich, C., Kisi, E., Zhang, J., Kirstein, O.: Measurement and analysis of the stress distribution during die compaction using neutron diffraction. Granular Matter 14(6), 671–680 (2012)

    Article  Google Scholar 

  25. Wood, D.M., Leśniewska, D.: Stresses in granular materials. Granular Matter 13(4), 395–415 (2011)

    Article  Google Scholar 

  26. Zhang, J., Wensrich, C., Kisi, E., Luzin, V., Kirstein, O., Smith, A.: Stress distributions in compacted powders in convergent and stepped dies. Powder Technol. 292, 23–30 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to acknowledge financial assistance provided by the Australian Research Council (DP130104290). Access to the KOWARI and DINGO instruments was made possible by the Australian Centre for Neutron Scattering (Proposal PP2881).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.M. Wensrich.

Ethics declarations

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wensrich, C., Kisi, E., Luzin, V. et al. Evolution of a contact force network in a 2D granular assembly: an examination using neutron diffraction. Granular Matter 23, 70 (2021). https://doi.org/10.1007/s10035-021-01135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01135-0

Keywords

Navigation