Computational modeling of the dynamics and interference effects of an erosive granular jet impacting a porous, compliant surface

Abstract

The general problem of a loosely flowing erosive granular jet undergoing impact with a compliant surface is common in many manufacturing processes, and also in the operating environment of a variety of machine parts. This paper presents a three-dimensional, collision-driven discrete particle simulation framework for investigating the dynamics of a jet of erosive particles impacting a surface with a specified porosity and compliance. The framework is capable of handling repeated collisions between incoming particles and rebounding particles, and between particles and surfaces. It is also capable of performing a coupled simultaneous calculation of sub-surface stresses in the material, assuming a certain porosity. Well illustrated numerical examples are presented with detailed analysis for investigations on the mechanics and energetics of the interfering collisions in eroding jets close to the target surface, on the effect of such interference on the material erosion, and on the evolving stress levels and potential damage zones under the action of impact. Particularly, the assumption of considering first-order collisions between oncoming and rebounding jet particles is re-examined. The influence of repeated collisions on energy transferred to the surface was found to be significant under conditions which involves high particle numbers or fluxes, and also high degrees of inelasticity. The overall trends for parametric variations were found to be in accordance with reported trends in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Anand, K., Hovis, S.K., Conrad, H., Scattergood, R.O.: Flux effects in solid particle erosion. Wear 118(2), 243–257 (1987)

    Article  Google Scholar 

  2. 2.

    Andrews, D.R., Horsfield, N.: Particle collisions in the vicinity of an eroding surface. J. Phys. D Appl. Phys. 16(4), 525–538 (1983)

    Article  ADS  Google Scholar 

  3. 3.

    Arbelaez, D., Zohdi, T.I., Dornfeld, D.A.: Modeling and simulation of material removal with particulate flows. Comput. Mech. 42(5), 749–759 (2008)

    Article  MATH  Google Scholar 

  4. 4.

    Arbelaez, D., Zohdi, T.I., Dornfeld, D.A.: On impinging near-field granular jets. Int. J. Numer. Methods Eng. 80(6–7), 815–845 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Bitter, J.G.A.: A study of erosion phenomena. Part I. Wear 6(1), 5–21 (1963)

    Google Scholar 

  6. 6.

    Brilliantov, N.V., Spahn, F., Hertzsch, J.M., Thorsten, P.: Model for collisions in granular gases. Phys. Rev. E 53(5), 5382–5392 (1996)

    Article  ADS  Google Scholar 

  7. 7.

    Burzynski, T., Papini, M.: Analytical models of the interference between incident and rebounding particles within an abrasive jet: comparison with computer simulation. Wear 263(7–12), 1593–1601 (2007)

    Article  Google Scholar 

  8. 8.

    Burzynski, T., Papini, M.: Analytical model of particle interference effects in divergent erosive jets. Tribol. Int. 43(3), 554–567 (2010)

    Article  Google Scholar 

  9. 9.

    Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33(2), 2899–2938 (1996)

    Article  MATH  Google Scholar 

  10. 10.

    Chaboche, J.L.: Continuum damage mechanics. J. Appl. Mech. 55(1), 59–64 (1988)

    Article  ADS  Google Scholar 

  11. 11.

    Chen, X., Wang, R., Yao, N., Evans, A.G., Hutchinson, J.W., Bruce, R.W.: Foreign object damage in a thermal barrier system: mechanisms and simulations. Mater. Sci. Eng. A 352(1–2), 221–231 (2003)

    Google Scholar 

  12. 12.

    Cheng, X., Varas, G., Citron, D., Jaeger, H., Nagel, S.: Collective behavior in a granular jet: emergence of a liquid with zero surface tension. Phys. Rev. Lett. 99(18), 188001 (2007)

    Article  ADS  Google Scholar 

  13. 13.

    Ciampini, D., Spelt, J.K., Papini, M.: Simulation of interference effects in particle streams following impact with a flat surface. Part I. Theory and analysis. Wear 254(3–4), 237–249 (2003)

    Article  Google Scholar 

  14. 14.

    Ciampini, D., Spelt, J.K., Papini, M.: Simulation of interference effects in particle streams following impact with a flat surface part II. Parametric study and implications for erosion testing and blast cleaning. Wear 254, 250–264 (2003)

    Article  Google Scholar 

  15. 15.

    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  16. 16.

    Duran, J.: Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials. Springer, New York (2000)

    Book  Google Scholar 

  17. 17.

    Finnie, I.: Erosion of surfaces by solid particles. Wear 3, 87–103 (1960)

    Article  Google Scholar 

  18. 18.

    Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press (2001)

  19. 19.

    Gomes-Ferreira, C., Ciampini, D., Papini, M.: The effect of inter-particle collisions in erosive streams on the distribution of energy flux incident to a flat surface. Tribol. Int. 37(10), 791–807 (2004)

    Article  Google Scholar 

  20. 20.

    Haff, P.K., Werner, B.T.: Computer simulation of the mechanical sorting of grains. Powder Technol. 48(3), 239–245 (1986)

    Article  Google Scholar 

  21. 21.

    Hamilton, G.M.: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 197, 53–59 (1983)

    Article  Google Scholar 

  22. 22.

    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33(10), 3125–3131 (1962)

    Article  ADS  MATH  Google Scholar 

  23. 23.

    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. 24.

    Hertz, H.: Miscellaneous Papers. Macmillan, New York (1896)

    MATH  Google Scholar 

  25. 25.

    Huang, Y.J., Chan, C.K., Zamankhan, P.: Granular jet impingement on a fixed target. Phys. Rev. E 82(3), 031307 (2010)

    Article  ADS  Google Scholar 

  26. 26.

    Hutchings, I.M., Winter, R.E., Field, J.E.: Solid particle erosion of metals: the removal of surface material by spherical projectiles. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 348(1654), 379–392 (1976)

    Article  ADS  Google Scholar 

  27. 27.

    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  28. 28.

    Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

  29. 29.

    Lubachevsky, B.D., Stillinger, F.H.: Geometric properties of random disk packings. J. Stat. Phys. 60(5), 561–583 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. 30.

    Mattson, W., Rice, B.M.: Near-neighbor calculations using a modified cell-linked list method. Comput. Phys. Commun. 119(2–3), 135–148 (1999)

    Article  ADS  Google Scholar 

  31. 31.

    Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259–268 (1949)

    MATH  MathSciNet  Google Scholar 

  32. 32.

    Müller, P., Formella, A., Pöschel, T.: Granular jet impact: probing the ideal fluid description. J. Fluid Mech. 751, 601–626 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. 33.

    Müller, P., Pöschel, T.: Collision of viscoelastic spheres: compact expressions for the coefficient of normal restitution. Phys. Rev. E 84(2), 021302 (2011)

    Article  ADS  Google Scholar 

  34. 34.

    Müller, P., Pöschel, T.: Two-ball problem revisited: limitations of event-driven modeling. Phys. Rev. E 83(4), 041304 (2011)

    Article  ADS  Google Scholar 

  35. 35.

    Müller, P., Pöschel, T.: Event-driven molecular dynamics of soft particles. Phys. Rev. E 87(3), 033301 (2013)

    Article  ADS  Google Scholar 

  36. 36.

    Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  37. 37.

    Nicholls, J.R., Jaslier, Y., Rickerby, D.S.: Erosion and foreign object damage of thermal barrier coatings. Mater. Sci. Forum 251–254, 935–948 (1997)

    Article  Google Scholar 

  38. 38.

    Oden, J.T., Pires, E.B.: Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. J. Appl. Mech. 50, 67–76 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. 39.

    Oka, Y.I., Nishimura, M., Nagahashi, K., Matsumura, M.: Control and evaluation of particle impact conditions in a sand erosion test facility. Wear 250(1–12), 736–743 (2001)

    Article  Google Scholar 

  40. 40.

    Oka, Y.I., Okamura, K., Yoshida, T.: Practical estimation of erosion damage caused by solid particle impact. Wear 259(1–6), 95–101 (2005)

    Article  Google Scholar 

  41. 41.

    Plantard, G., Papini, M.: Mechanical and electrical behaviors of polymer particles. Experimental study of the contact area between two particles. Experimental validation of a numerical model. Granul. Matter 7(1), 1–12 (2005)

    Article  Google Scholar 

  42. 42.

    Pöschel, T., Schwager, T.: Computational Granular Dynamics: Models and Algorithms. Springer, Berlin (2005)

    Google Scholar 

  43. 43.

    Ramanujam, N., Nakamura, T.: Erosion mechanisms of thermally sprayed coatings with multiple phases. Surf. Coat. Technol. 204(1–2), 42–53 (2009)

    Article  Google Scholar 

  44. 44.

    Shäfer, J., Dippel, S., Wolf, D.E.: Force schemes in simulations of granular materials. J. Phys. I 6(1), 5–20 (1996)

    Google Scholar 

  45. 45.

    Shipway, P.H., Hutchings, I.M.: A method for optimizing the particle flux in erosion testing with a gas-blast apparatus. Wear 174(1–2), 169–175 (1994)

    Article  Google Scholar 

  46. 46.

    Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. 47.

    Torquato, S., Uche, O., Stillinger, F.: Random sequential addition of hard spheres in high Euclidean dimensions. Phys. Rev. E 74(6), 1–16 (2006)

    Article  MathSciNet  Google Scholar 

  48. 48.

    Uuemois, H., Kleis, I.: A critical analysis of erosion problems which have been little studied. Wear 31, 359–371 (1975)

    Article  Google Scholar 

  49. 49.

    Vu-Quoc, L., Lesburg, L., Zhang, X.: An accurate tangential forcedisplacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation. J. Comput. Phys. 196(1), 298–326 (2004)

    Article  ADS  MATH  Google Scholar 

  50. 50.

    Vu-Quoc, L., Zhang, X.: An accurate and effcient tangential force-displacement model for elastic frictional contact in particle flow simulations. Mech. Mater. 31(4), 235–269 (1999)

    Article  Google Scholar 

  51. 51.

    Waitukaitis, S.R., Grütjen, H.F., Royer, J.R., Jaeger, H.M.: Droplet and cluster formation in freely falling granular streams. Phys. Rev. E 83(5), 051302 (2011)

    Article  ADS  Google Scholar 

  52. 52.

    Walton, O.R., Braun, R.L.: Viscosity, granular temperature, and stress calculations for shearing assemblies of inelastic frictional disks. J. Rheol. 30(5), 949–980 (1986)

    Article  ADS  Google Scholar 

  53. 53.

    Widom, B.: Random sequential addition of hard spheres to a volume. J. Chem. Phys. 44(10), 3888 (1966)

    Article  ADS  Google Scholar 

  54. 54.

    Wriggers, P., Zavarise, G.: Computational Contact Mechanics. Springer, Berlin (2002)

    Google Scholar 

  55. 55.

    Zhang, X., Vu-Quoc, L.: An accurate elasto-plastic frictional tangential force displacement model for granular-flow simulations: displacement-driven formulation. J. Comput. Phys. 225(1), 730–752 (2007)

    Article  ADS  MATH  Google Scholar 

  56. 56.

    Zohdi, T.I.: Bounding envelopes in multiphase material design. J. Elast. 66(1), 47–62 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  57. 57.

    Zohdi, T.I.: On the tailoring of microstructures for prescribed effective properties. Int. J. Fract. 118(4), 89–94 (2002)

  58. 58.

    Zohdi, T.I.: An introduction to modeling and simulation of particulate flows. In: Computational Science and Engineering, vol 4. Siam, Philadelphia (2007)

  59. 59.

    Zohdi, T.I.: On the dynamics of charged electromagnetic particulate jets. Arch. Comput. Methods Eng. 17(2), 109–135 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Siemens Energy, and the authors would like to thank them for their support. The work has not been published in any other journal prior to this. There were no study participants involved in this work, as the work was purely computational. The authors also declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Debanjan Mukherjee.

Appendix: Stresses due to point loadings

Appendix: Stresses due to point loadings

For completeness of presentation, we outline here the expressions for the stresses due to point normal and point tangential loading which have been employed for the sub-surface stress calculations for the particle jet impacting the porous material layer. In the following, it is assumed that the loading acts on a surface located along the \(x\)\(y\) plane—at \(z=0\). The point where the load is applied is assumed to be the origin. For any other loading point, simple coordinate transformations need to be employed. Assuming that a normal loading of magnitude \(F_N\) is applied along the \(z\) direction, the stresses on the surface, and sub-surface is given in cylindrical polar coordinates as follows:

$$\begin{aligned} \sigma _{rr}= & {} \frac{F_N}{2\pi } \left[ (1 - 2\nu ) \left( \frac{1}{r^2} - \frac{z}{\rho r^2} \right) - \frac{3 z r^2}{\rho ^5} \right] \end{aligned}$$
(49)
$$\begin{aligned} \sigma _{\theta \theta }= & {} - \frac{F_N}{2\pi } \left( 1 - 2\nu \right) \left[ \frac{1}{r^2} - \frac{z}{\rho r^2} - \frac{z}{\rho ^3} \right] \end{aligned}$$
(50)
$$\begin{aligned} \sigma _{zz}= & {} - \frac{3 F_N}{2\pi } \frac{z^3}{\rho ^5} \end{aligned}$$
(51)
$$\begin{aligned} \sigma _{rz}= & {} - \frac{3 F_N}{2\pi } \frac{r z^2}{\rho ^5}, \sigma _{\theta z} = \sigma _{\theta r} = 0 \end{aligned}$$
(52)

where \(z \ge 0\), \(r^2 = x^2 + y^2\), and \(\rho ^2 = x^2 + y^2 + z^2\). The expressions are radially symmetric for a single point loading along the loading axis. Corresponding expressions for stresses due to a tangential loading of magnitude \(F_X\) applied along the positive \(x\) direction can be written as follows:

$$\begin{aligned} \sigma _{xx}&= \frac{F_X}{2\pi } \Biggl [ -\frac{3 x^3}{\rho ^5} + (1 - 2\nu ) \Biggl \{ \frac{x}{\rho ^3} - \frac{3x}{\rho ( \rho + z )^2} \nonumber \\&\quad + \frac{x^3}{\rho ^3 ( \rho + z )^2} + \frac{2x^3}{\rho ^2 ( \rho + z )^3} \Biggr \} \Biggr ] \end{aligned}$$
(53)
$$\begin{aligned} \sigma _{yy}&= \frac{F_X}{2\pi } \Biggl [ -\frac{3 x y^2}{\rho ^5} + (1 - 2\nu ) \Biggl \{ \frac{x}{\rho ^3} - \frac{x}{\rho ( \rho + z )^2} \nonumber \\&\quad + \frac{x y^2}{\rho ^3 ( \rho + z )^2} + \frac{2x y^2}{\rho ^2 ( \rho + z )^3} \Biggr \} \Biggr ] \end{aligned}$$
(54)
$$\begin{aligned} \sigma _{xy}&= \frac{F_X}{2\pi } \Biggl [ -\frac{3 x^2 y}{\rho ^5} + ( 1 - 2\nu ) \Biggl \{ -\frac{y}{\rho ( \rho + z )^2}\nonumber \\&\quad + \frac{x^2 y}{\rho ^3 ( \rho + z )^2} + \frac{2 x^2 y}{\rho ^2 ( \rho + z )^3} \Biggr \} \Biggr ] \end{aligned}$$
(55)
$$\begin{aligned} \sigma _{zz}&= \frac{F_X}{2 \pi }\left[ -\frac{3 x z^2}{\rho ^5} \right] \end{aligned}$$
(56)
$$\begin{aligned} \sigma _{yz}&= \frac{F_X}{2 \pi }\left[ -\frac{3 x y z}{\rho ^5} \right] \end{aligned}$$
(57)
$$\begin{aligned} \sigma _{zx}&= \frac{F_X}{2 \pi }\left[ -\frac{3 x^2 z}{\rho ^5} \right] \end{aligned}$$
(58)

The expressions for point loading along \(y\) direction can be obtained from the above by simply interchanging \(x\) and \(y\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Zohdi, T.I. Computational modeling of the dynamics and interference effects of an erosive granular jet impacting a porous, compliant surface. Granular Matter 17, 231–252 (2015). https://doi.org/10.1007/s10035-015-0556-2

Download citation

Keywords

  • Granular jet
  • Solid particle erosion
  • Collisions
  • Discrete element method
  • Interference effect