Skip to main content
Log in

Density variations in dry granular avalanches

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Dry granular avalanches exhibit bulk density variations. Understanding the physical mechanisms behind these density variations is especially important in the study of geophysical flows such as snow and rock avalanches. We performed small-scale chute experiments with glass beads to investigate how bulk density changes, measuring velocity profiles, flow height and basal normal stress in an Eulerian measurement frame. The chute inclination and the starting volume of glass beads were systematically varied. From the flow height and basal normal stress data, we could compute the depth-averaged density at the measurement location during the passing of the avalanches. We observed that the depth-averaged density is not constant, varying with chute inclination and starting volume. Furthermore, the depth-averaged density varies from the head to the tail within a single avalanche. We model changes in density by accounting for the energy associated with the velocity fluctuations of the grains, the density and the velocity fluctuations being related by the constitutive relation for the normal stress. We propose expressions for the conduction and decay coefficients of the fluctuation energy which allow us to model the observed density variations in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Christen, M., Kowalski, J., Bartelt, P.: Numerical simulation of avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63, 1–14 (2010)

    Google Scholar 

  2. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Louge, M., Steiner, R., Keast, S., Decker, R., Dent, J., Schneebeli, M.: Application of capacitance instrumentation to the measurement of density and velocity of flowing snow. Cold Reg. Sci. Technol. 25(1), 47–63 (1997)

    Article  Google Scholar 

  4. Dent, J.D., Burrell, K.J., Schmidt, D.S., Louge, M.Y., Adams, E.E., Jazbutis, T.G.: Density, velocity and friction measurements in a dry-snow avalanche. Ann. Glaciol. 26, 247–252 (1998)

    ADS  Google Scholar 

  5. Sovilla, B., Schaer, M., Kern, M., Bartelt, P.: Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. J. Geophys. Res. 113, F01010 (2008)

    Article  ADS  Google Scholar 

  6. Bartelt, P., McArdell, B.: Granulometric investigations of snow avalanches. J. Glaciol. 55(193), 829–833 (2009)

    Article  ADS  Google Scholar 

  7. Bagnold, R.: Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 225, 49–63 (1954)

    Article  ADS  Google Scholar 

  8. Boyer, F., Guazzelli, E., Pouliquen, O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301 (2011)

    Article  ADS  Google Scholar 

  9. Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Savage, S.B.: Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92(1), 53–96 (1979)

    Article  ADS  MATH  Google Scholar 

  11. Ancey, C., Evesque, P.: Frictional-collisional regime for granular suspension flows down an inclined channel. Phys. Rev. E 62, 8349 (2000)

    Article  ADS  Google Scholar 

  12. Andreotti, B., Daerr, A., Douady, S.: Scaling laws in granular flows down a rough plane. Phys. Fluids 14(1), 415–418 (2002)

    Google Scholar 

  13. Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65, 011304 (2001)

    Article  ADS  Google Scholar 

  14. Silbert, L.E., Ertas, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302 (1997)

    Article  ADS  Google Scholar 

  15. Haff, P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid. Mech. 134, 401–430 (1983)

    Article  ADS  MATH  Google Scholar 

  16. Jenkins, M.T., McTigue, D.F.: Transport processes in concentrated suspensions: the role of particle fluctuations. Inst. Math. Appl. 26, 70 (1990)

    Google Scholar 

  17. Jenkins, J.T., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3489 (1985)

    Article  ADS  MATH  Google Scholar 

  18. Goldhirsch, I., Tan, M.L.: The single particle distribution function for rapid granular shear flows of smooth inelastic disks. Phys. Fluids 8, 1752–1763 (1996)

    Article  ADS  Google Scholar 

  19. Savage, S.B.: Granular flows down rough inclines—review and extension. In: Jenkins, J. T., Satake, M. (eds.) Mechanics of granular materials: new models and constitutive relations, pp. 261–282. Elsevier, Amsterdam (1983)

  20. Schaefer, M., Bugnion, L., Kern, M., Bartelt, P.: Position dependent velocity profiles in granular avalanches. Granul. Matter 12(3), 327–336 (2010)

    Article  Google Scholar 

  21. Jaeger, H.M., Nagel, S.R.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1274 (1990)

    Article  ADS  Google Scholar 

  22. D’Anna, G., Mayor, P., Barrat, A., Loreto, V., Nori, F.: Observing brownian motion in vibration-fluidized granular matter. Nature 424, 909–912 (2003)

    Article  ADS  Google Scholar 

  23. Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid. Mech. 35, 267–297 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  24. Son, R., Perez, J.A., Voth, G.A.: Experimental measurements of the collapse of a two-dimensional granular gas under gravity. Phys. Rev. E, 041302 (2008)

  25. Landau, L., Lifchitz, E.: Mécanique des fluides, Editions de Moscou, Collection Physique théorique, vol. 6 (1971)

  26. Richman, M.W.: Boundary conditions based upon a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75, 227–240 (1988)

    Article  Google Scholar 

  27. Forterre, Y., Pouliquen, O.: Stability analysis of rapid granular chute flows: formation of longitudinal vortices. J. Fluid Mech. 467, 361–387 (2002)

    Article  ADS  MATH  Google Scholar 

  28. Woodhouse, M.J., Hogg, A.J., Sellar, A.A.: Rapid granular flows down inclined planar chutes. J. Fluid Mech. 652, 427–460 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perry Bartelt.

Appendix

Appendix

The interval \(\left[ 0,h\right] \) is discretized in \(N\) elements. The vector \(y\) with size \(N+\)1 contains the \(y\)-coordinates of the elements edges. In a first step Eq. (18) is integrated for \(n=N\) to 1 yielding the normal stress vector with size \(N+\)1:

$$\begin{aligned} p^n = p^{n+1} + \rho ^n g cos\theta \left( y^{n+1} - y^n\right) . \end{aligned}$$
(22)

with the boundary conditions \(p^{N+1} = 0\). In a second step Eq. (19) is integrated over the flow depth. First the vector \(\frac{\partial T}{\partial y}\) with size \(N+\)1 is computed for \(n=N\) to 1, second the vector \(T\) with size \(N+\)1 is calculated for \(n=\) 2 to \(N+\)1:

$$\begin{aligned} \frac{\partial T}{\partial y}^n&= \frac{\partial T}{\partial y}^{n+1} - \left( y^{n+1} - y^n\right) \Bigg (-\frac{\tau _0}{\kappa l^{n+1}} \left( d \frac{\partial u}{\partial y} \right) ^3\nonumber \\&- \frac{1}{\rho ^{n+1}} \frac{\partial \rho }{\partial y}^{n+1} \frac{\partial T}{\partial y}^{n+1} + \frac{\gamma _0}{\kappa l^{n+1}} T^{n+1 \frac{3}{2}} \Bigg )\nonumber \\ T^{n+1}&= \quad T^{n} + \left( y^{n+1} - y^n \right) \frac{\partial T}{\partial y}^n \end{aligned}$$
(23)

with the boundary conditions \(\frac{\partial T}{\partial y}^{N+1}=\) 0 and \(T^1 = \xi \sqrt{u_s}\). In a third step, the normal stress and the granular temperature are evaluated at the centre of the elements (vectors with size \(N\)) and a new density vector with size \(N\) is calculated. The size of the elements 1 to \(N\) i.e. the vector \(y\) is modified with respect to the new density vector so that the mass of each element is conserved.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugnion, L., Schaefer, M. & Bartelt, P. Density variations in dry granular avalanches. Granular Matter 15, 771–781 (2013). https://doi.org/10.1007/s10035-013-0434-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0434-8

Keywords

Navigation