Skip to main content
Log in

The role of rolling friction in granular packing

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In order to study the effects of the rolling friction of the particles on granular packing, we present a detailed analysis of circular disk assemblies with the rolling friction under macroscopic one-dimensional compression. The rolling friction of the particles produces a resisting moment to the rolling at each contact. A series of 2-D DEM simulations are performed with various values for the rolling friction parameter. We focus on several macroscopic and microstructural properties of granular media and analyze them as a functions of the rolling friction. From these results, we show that the rolling resistance, which results from the rolling friction of the particles, contributes to the inhibition of the rearrangement of the particles and increases the magnitude of the fabric anisotropy under packing. In addition, from both microscopic and macroscopic points of view, we describe that the stress state in a granular packing can vary considerably depending on the rolling resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jaeger, H., Nagel, S., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  2. Goldenberg, C., Goldhirch, I.: Effects of friction and disorder on the quasistatic response of granular solids to a localized force. Phy. Rev. E 77, 041303 (2008)

    Article  ADS  Google Scholar 

  3. Roux, J.N.: Geometric origin of mechanical properties of granular materials. Phys. Rev. E 61(6), 6802 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. Makse, H.A., johnson, D.L., Schwartz, L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84(18), 4160 (2000)

    Article  ADS  Google Scholar 

  5. Mueth, D.M., Jaeger, H.M., Nagel, S.R.: Force distribution in a granular medium. Phys. Rev. E 57(3), 3164 (1998)

    Article  ADS  Google Scholar 

  6. Tighe, B.P., Snoeijer, J.H., Vlugt, T.J.H., van Hecke, M.: The force network ensemble for granular packings. Soft Matter 6, 2908–2917 (2010)

    Article  ADS  Google Scholar 

  7. Matuttis, H.G., Luding, S., Herrmann, H.J.: Discrete element simulations of dense packings and heaps made of spherical and nonspherical particles. Powder Technol. 109, 278–292 (2000)

    Article  Google Scholar 

  8. Rothenberg, L., Bathurst, R.J.: Micromechanical features of granular assemblies with planer elliptical particles. Géotechnique 42(1), 79–95 (1992)

    Article  Google Scholar 

  9. Guises, R., Xiang, J., Latham, J.P., Munjiza, A.: Granular packing: numerical simulation and the characterisation of the effect of particle shape. Granul. Matter 11, 281–292 (2009)

    Article  MATH  Google Scholar 

  10. Lu, M., McDowell, G.R.: The importance of modeling ballast particle shape in the discrete element method. Granul. Matter 9, 69–80 (2007)

    Article  Google Scholar 

  11. Matsushima, T., Chang, C.S.: Qulitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies. Granul. Matter (2011). doi:10.1007/s10035-011-0263-6

  12. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. Powder Technol. 109, 192–205 (2000)

    Article  Google Scholar 

  13. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular, assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  14. Sakaguchi, H., Ozaki, E., Igarashi, T.: Plugging of the flow of the granular materials during the discharge from a silo. Int. J. Mod. Phys. 7, 1949–1963 (1993)

    Article  ADS  Google Scholar 

  15. ITASCA.: PFC2D Theory and Background. Itasca Consulting Group, Inc., Minneapolis (2004)

  16. Tordesillas, A., Stuart Walsh, D.C.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124, 106–111 (2002)

    Article  Google Scholar 

  17. Utili, S., Nova, R.: DEM analysis of bonded granular geomaterials. Int. J. Numer. Anal. Meth. Geomech. 7, 1997–2031 (2008)

    Article  Google Scholar 

  18. Cundall, P. A.: 4 distinct element methods of rock and soil structure. In: Brown, E.T. (ed.) Analytical and Computational Methods in Engineering Rock Mechanics, pp. 129–163. Allen &Uwin, London (1987).

  19. Estrada, N., Taboada, A., Radjaï, F.: Sear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78(6), 021301 (2008)

    Article  ADS  Google Scholar 

  20. Yun, T.S., Evans, T.M.: Evolution of at-rest lateral stress for cemented sands: experimental and numerical investigation. Granul. Matter (2011). doi:10.1007/s10035-011-0279-y

  21. Jàky, J.: The coefficient of earth pressure at rest. In Hungarian (A nyugalmi nyomas tenyezoje), J. Soc. Hung. Eng. Arch. (Magyar Mernok es Epitesz-Egylet Kozlonye), pp. 355–358 (1944)

  22. Eder, W.: Friction measurements in granular media. Phy. Rev. E 69, 021303 (2004)

    Article  ADS  Google Scholar 

  23. Bathurst, R.J., Rothenburg, L.: Observation on stress-force fabric relationships in idealized granular materials. Géotechnique 39(4), 601–614 (1989)

    Article  Google Scholar 

  24. Radjaï, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packing. Phys. Rev. Lett. 80(1), 61 (1998)

    Article  ADS  Google Scholar 

  25. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079 (2005)

    Article  ADS  Google Scholar 

  26. Snoeijer, J.H., Ellenbroek, W.G., Vlugt, T.J.H., van Hecke, M.: Sheared force network: anisotropies, yielding, and geometry. Phys. Rev. Lett. 96, 098001 (2006)

    Article  ADS  Google Scholar 

  27. O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. Taylor & Francis, New York (2011)

    Google Scholar 

  28. Poschel, T., Schwager, T.: Computational Granular Dynamics. Springer, New York (2005)

    Google Scholar 

  29. Feng, Y., Han, K., Owen, D.: Filling domains with disks: An advancing front approach. Int. J. Numer. Meth. Engng. 56(5), 699–731 (2003)

    Article  MATH  Google Scholar 

  30. Geng, J., Longhi, E., Behringer, R.P., Howell, D.W.: Memory in two-dimensional heap experiments. Phy. Rev. E 64, R060301 (2001)

    Article  ADS  Google Scholar 

  31. Voivret, C., Radjaï, F., Delenne, J.-Y., Youssoufi, M.S.E.I.: Space-filling properties of polydisperse granular media. Phy. Rev. E 76, 021301 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Fukumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumoto, Y., Sakaguchi, H. & Murakami, A. The role of rolling friction in granular packing. Granular Matter 15, 175–182 (2013). https://doi.org/10.1007/s10035-013-0398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0398-8

Keywords

Navigation