Skip to main content
Log in

Distinct element method analyses of idealized bonded-granulate cut slope

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents a numerical study of idealized bonded-granulate cut slope subject to sudden strength reduction. A 2-D Distinct Element Method (DEM) has been used to carry out a simulation of full-process slope failure with focus on very-rapid and extremely-rapid landslide process. The numerical results show that during the landslide process: (1) the soil moves either in a rather random/chaotic way (diffuse failure) or in different curved shear bands (localized failure). The soil close to slope surface moves along downward slope while the soil close to the slope toe moves significantly in the horizontal direction. The landslide experiences very rapid flow most of the time, with its maximum velocity increaseing obviously with time at first to its peak value, then decreasing gradually to zero. (2) The soil close to slope undergo a repeated loading and unloading process, and an evident rotation of principal stresses. Their stress state may arrive slightly over the peak strength envelope as a result of extremely rapid flow. (3) There is little grain-size effect for the grains at low velocity, but an evident grain-size effect for the grains at high velocity, with large-size grains tending to move fast. (4) The post-failure inclination is much smaller than the peak/residual internal friction angle of the material. The post-failure slope surface passes through the centre of the initial slope surface instead of the initial slope toe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laouafa F., Darve F.: Modelling of slope failure by a material instability mechanism. Comput. Geotech. 29, 301–325 (2002)

    Article  Google Scholar 

  2. Fell R., Glastonbury J., Hunter G.: Rapid landslides: the importance of understanding mechanisms and rupture surface mechanics. The eighth glossop lecture. Q. J. Eng. Geol. Hydrogeol. 40, 9–27 (2007)

    Article  Google Scholar 

  3. Morgenstern N.R., Price V.E.: The analysis of the stability of general slip surfaces. Geotechnique 15(1), 79–93 (1965)

    Article  Google Scholar 

  4. Sarma S.K.: Stability analysis of embankments and slopes. Geotechnique 23(3), 423–433 (1973)

    Article  MathSciNet  Google Scholar 

  5. McCombie P.F.: Displacement based multiple wedge slope stability analysis. Comput. Geotech. 36, 332–341 (2009)

    Article  Google Scholar 

  6. Sarma S.K.: Stability analysis of embankments and slopes. J. Geotech. Eng. (ASCE) 105(GT12), 1511–1524 (1979)

    Google Scholar 

  7. Greve R., Hutter K.: Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions. Philos. Trans. R. Soc. Lond. 342, 573–600 (1993)

    Article  ADS  Google Scholar 

  8. Pouliquen O., Forterre Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)

    Article  ADS  MATH  Google Scholar 

  9. Ling H.I., Wu M.H., Leshchinsky D., Leshchinsky B.: Centrifuge modeling of slope instability. J. Geotech. Geoenviron. Eng. (ASCE) 135(6), 758–767 (2009)

    Article  Google Scholar 

  10. Tohari A., Nishigaki M., Komatsu M.: Laboratory rainfall-induced slope failure with moisture content measurement. J. Geotech. Geoenviron. Eng. (ASCE) 133(5), 575–587 (2007)

    Article  Google Scholar 

  11. Kulasingam R., Malvick E., Boulanger R.W., Kutter B.L.: Strength loss and localization at silt interlayers in slopes of liquefied sand. J. Geotech. Geoenviron. Eng. (ASCE) 130(11), 1192–1202 (2004)

    Article  Google Scholar 

  12. Pastor M., Blanc T., Pastor M.J.: A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J. Non-Newtonian Fluid Mech. 158, 142–153 (2009)

    Article  Google Scholar 

  13. Pastor M., Haddad B., Sorbino G., Cuomo S., Drempetic V.: A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Methods Geomech. 33, 143–172 (2009)

    Article  Google Scholar 

  14. Quecedo M., Pastor M., Herreros M.I., Fernandez Merodo J.A.: Numerical modelling of the propagation of fast landslides using the finite element method. Int. J. Numer. Methods Eng. 59, 755–794 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zornberg J.G., Mitchell J.K., Sitar N.: Testing of reinforced slopes in a geotechnical centrifuge. Geotech, Test. J. (ASTM) 20(4), 470–480 (1997)

    Article  Google Scholar 

  16. Nova-Roessig L., Sitar N.: Centrifuge model study of the seismic response of reinforced soil slopes. J. Geotech. Geoenviron. Eng. (ASCE) 132(3), 388–400 (2006)

    Article  Google Scholar 

  17. Katz O., Aharonov E.: Landslides in vibrating sand box: what controls types of slope failure and frequency magnitude relations?. Earth Planet. Sci. Lett. 247, 280–294 (2006)

    Article  ADS  Google Scholar 

  18. Malvick E.J., Kutter B.L., Boulanger R.W.: Post-shaking shear strain localization in a centrifuge model of a saturated sand slope. J. Geotech. Geoenviron. Eng. (ASCE) 134(2), 164–174 (2008)

    Article  Google Scholar 

  19. Malvick E.J., Kutter B.L., Boulanger R.W., Kulasingam R.: Shear localization due to liquefaction-induced void redistribution in a layered infinite slope. J. Geotech. Geoenviron. Eng. (ASCE) 132, 1293–1303 (2006)

    Article  Google Scholar 

  20. Fiegel G.L., Kutter B.L.: Liquefaction-induced lateral spreading of mildly sloping ground. J. Geotech. Eng. 120(12), 2236–2243 (1994)

    Article  Google Scholar 

  21. Whitman, R.V.: On liquefaction. In: Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, pp. 1923–1926. San Francisco, Balkema, Rotterdam, The Netherlands (1985)

  22. Ishihara, K.: Post-earthquake failure of a tailings dam due to liquefaction of the pond deposit. In: Proceedings of the International Conference on Case Histories in Geotechnical Engineering, pp. 1129–1143. St. Louis (1984)

  23. Seed H.B., Makdisi F., Idriss I.M., Lee K.L.: The slides in the San Fernando Dams during the earthquake of February 9, 1971. J. Geotech. Eng. Div. (ASCE) 101, 651–688 (1975)

    Google Scholar 

  24. Fernandez Merodo J.A., Pastor M., Mira P., Tonni L., Herreros M.I., Gonzalez E., Tamagnini R.: Modelling of diffuse failure mechanisms of catastrophic landslides. Comput. Methods Appl. Mech. Eng. 193, 2911–2935 (2004)

    Article  ADS  MATH  Google Scholar 

  25. Fell, R.O., Leroueil, S., Riemer, W.: Keynote lecture-geotechnical engineering of the stability of natural slopes, and cuts and fills in soil. In: Proceeding of the International Conference on Geotechnical and Geological Engineering (Geo Eng 2000), pp. 21–120. Melbourne, 1. Technomic, Lancaster (2000)

  26. Hunter, G., Fell, R.: Mechanics of failure of soil slopes leading to ‘rapid’ failure. In: Picarelli, L. (ed.) Proceedings, International Conference Fast Slope Movements, Prediction and Prevention for Risk Mitigation, pp. 283–290. Naples, May 2003. Patron, Bologna (2003)

  27. Picarelli L., Oboni F., Evans S., Mostyn G., Fell R.: Hazard characterization and quantification. In: Hungr, O., Fell, R., Couture, R., Eberhardt, E. (eds) Landslide Risk Management, pp. 27–62. Balkema, Rotterdam (2005)

    Google Scholar 

  28. Gabet E.J., Mudd S.M.: The mobilization of debris flows from shallow landslides. Geomorphology 74, 207–218 (2006)

    Article  ADS  Google Scholar 

  29. Duncan J.M.: State of the art: limit equilibrium and finite element analysis of slopes. J. Geotech. Eng. (ASCE) 122(7), 577–596 (1996)

    Article  Google Scholar 

  30. Borja R.I.: Free boundary, fluid flow, and seepage forces in excavations. J. Geotech. Eng. (ASCE) 118(1), 125–146 (1992)

    Article  Google Scholar 

  31. Griffiths D.V., Lane P.A.: Slope stability analysis by finite elements. Geotechnique 49(3), 387–403 (1999)

    Article  Google Scholar 

  32. Cundall P.A., Strack O.D.L.: The distinct numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  33. Thornton C.: Numerical simulation of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  34. Bardet J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18, 159–182 (1994)

    Article  Google Scholar 

  35. Jiang M.J., Zhu H.H., Li X.M.: Strain localization analyses of idealized sands in biaxial tests by distinct element method. Frontiers Archit. Civ. Eng. China (FAC) 4(2), 208–222 (2010)

    Article  Google Scholar 

  36. Kuhn M.R., Mitchell J.K.: New perspectives on soil creep. J. Geotech. Geoenviron. Eng. 119(3), 507–524 (1993)

    Google Scholar 

  37. Anandarajah A.: On influence of fabric anisotropy on the stress–strain behaviour of clays. Comput. Geotech. 27(1), 1–17 (2000)

    Article  Google Scholar 

  38. McDowell G.R., Bolton M.D.: On the micro mechanics of crushable aggregates. Geotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  39. Cheng Y.P., Bolton M.D., Nakata Y.: Crushing and plastic deformation of soils simulated using DEM. Geotechnique 54(2), 131–141 (2004)

    Article  Google Scholar 

  40. Jiang M.J., Harris D., Yu H.S.: Kinematic models for non-coaxial granular materials: part II: evaluation. Int. J. Numer. Anal. Methods Geomech. 29(7), 663–689 (2005)

    Article  MATH  Google Scholar 

  41. Jiang M.J., Harris D., Zhu H.H.: Future continuum models for granular materials in penetration analyses. Granul. Matters 9, 97–108 (2007)

    Article  MATH  Google Scholar 

  42. Jiang M.J., Leroueil S., Konrad J.M.: Insight into shear strength functions of unsaturated granulates by DEM analyses. Comput. Geotech. 31(6), 473–489 (2004)

    Article  Google Scholar 

  43. Jiang M.J., Leroueil S., Konrad J.M.: Yielding of micro-structured geomaterial by DEM analysis. J. Eng. Mech. (ASCE) 131(11), 1209–1213 (2005)

    Article  Google Scholar 

  44. Jiang M.J., Yu H.S., Leroueil S.: A simple and efficient approach to capturing bonding effect in naturally micro-structured sands by discrete element method. Int. J. Numer. Methods Eng. 69, 1158–1193 (2007)

    Article  MATH  Google Scholar 

  45. Delenne J.Y., El Youssoufi M.S., Cherblanc F., Beneet J.C.: Mechanical behaviour and failure of cohesive granular materials. Int. J. Numer. Anal. Methods Geomech. 28, 1577–1594 (2004)

    Article  MATH  Google Scholar 

  46. Jiang M.J., Yu H.S., Harris D.: Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. Int. J. Numer. Anal. Methods Geomech. 30(7), 723–761 (2006)

    Article  Google Scholar 

  47. Wang Y.H., Leung S.C.: Characterization of cemented sand by experimental and numerical investigations. J. Geotech. Geoenviron. Eng. (ASCE) 134(7), 992–1004 (2008)

    Article  Google Scholar 

  48. Jiang M.J., Yu H.-S., Harris D.: Discrete element modelling of deep penetration in granular soils. Int. J. Numer. Anal. Methods Geomech. 30(4), 335–361 (2006)

    Article  MATH  Google Scholar 

  49. Jiang M.J., Zhu H.H., Harris D.: Classical and non-classical kinematic fields of two-dimensional penetration tests on granular ground by discrete element method analyses. Granul. Matter 10, 439–455 (2008)

    Article  Google Scholar 

  50. Teufelsbauer H., Wang Y., Chiou M.C., Wu W.: Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul. Matter 11, 209–220 (2009)

    Article  Google Scholar 

  51. Bharadwaj R., Wassgren C., Zenit R.: The unsteady drag force on a cylinder immersed in a dilute granular flow. Phys. Fluids 16, 1511–1517 (2006)

    Google Scholar 

  52. Hanes D.M., Walton O.R.: Simulations and physical measurements of glass spheres flowing down a bumpy incline. Powder Technol. 109, 133–144 (2000)

    Article  Google Scholar 

  53. Darve F., Servant G., Laouafa F., Khoa H.D.V.: Failure in geomaterials: continuous and discrete analyses. Comput. Methods Appl. Mech. Eng. 193, 3057–3085 (2004)

    Article  ADS  MATH  Google Scholar 

  54. Utili S., Nova R.: DEM analysis of bonded granular geomaterials. Int. J. Numer. Anal. Meth. Geomech. 32, 1997–2031 (2008)

    Article  Google Scholar 

  55. Thompson N., Bennett M.R., Petford N.: Analyses on granular mass movement mechanics and deformation, with distinct element numerical modeling: implications for large-scale rock and debris avalanches. Acta Geotech. 4, 233–247 (2009)

    Article  Google Scholar 

  56. Okada Y., Sassa K., Fukuoka H.: Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests. Eng. Geol. 75, 325–343 (2004)

    Article  Google Scholar 

  57. Jiang M.J., Konrad J.M., Leroueil S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

    Article  Google Scholar 

  58. Bolton, M.D., Gui, M.W.: The study of relative density and boundary effects for cone penetration tests in centrifuge. Research report: CUED/D-SOILS/TR256. Dept. of Engrg., Cambridge University, UK (1993)

  59. Phillips, R., Valsangkar, A.J.: An experimental investigation of factors affecting penetration resistance in granular soils in centrifuge modelling. Research report: CUED/D-SOILS/TR210. Dept. of Engrg., Cambridge University, UK (1987)

  60. Brown H.E., Holbrook W.S., Hornbach M.J., Nealon J.: Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Marine Geol. 229(3–4), 179–186 (2006)

    Article  Google Scholar 

  61. King J.: Tsing shan debris flow. Hong Kong Government. Geotechnical Engineering Office, Special Project Report SPR 1996; 6/96 (1996)

  62. Hungr O.: A model for the runout analysis of rapid flow slides, debris flows and avalanches. Can. Geotech. J. 32, 610–623 (1995)

    Article  Google Scholar 

  63. IUGS: A suggested method for describing the rate of movement of landslides. IUGS Work. Group Landslides Int. Assoc. Eng. Geol. Bull. 52, 75–78 (1995)

    Google Scholar 

  64. Jop P., Forterre Y., Pouliquen O.: Initiation of granular surface flows in a narrow channel. Phys. Fluids 19, 88–102 (2007)

    Article  Google Scholar 

  65. Josserand C., Lagree P.Y., Lhuillier D.: Stationary shear flows of dense granular materials: a tentative continuum modeling. Eur. Phys. J. E 14, 127–135 (2004)

    Article  Google Scholar 

  66. Scott A.A., Riemer M.: Collapse of saturated soil due to reduction in confinement. J. Geotech. Eng. (ASCE) 121(2), 216–220 (1995)

    Article  Google Scholar 

  67. Iverson R.M., LaHusen R.G.: Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246, 796–799 (1989)

    Article  ADS  Google Scholar 

  68. Nicot F., Daouadji A., Laouafa F., Darve F.: Second-order work, kinetic energy and diffuse failure in granular materials. Granul. Matter 13, 19–28 (2011)

    Article  Google Scholar 

  69. Moysey P.A., Baird M.H.I.: Size segregation of spherical nickel pellets in the surface flow of a packed bed: experiments and discrete element method simulations. Powder Technol. 196, 298–308 (2009)

    Article  Google Scholar 

  70. Iwahashi J., Watanabe S., Furuya T.: Landform analysis of slope movements using DEM in Higashikubiki area, Japan. Comput. Geosci. 27, 851–865 (2001)

    Article  ADS  Google Scholar 

  71. Law, R.P.H., Zhou, G.D., Ng, C.W.W., Tang, W.H.: Experimental and three-dimensional numerical investigations of the impact of dry granular flow on a barrier. Landslides and engineered slopes: from the past to the future. In: Chen et al. (eds.) Proceedings of the 10th Int. Symp. on Landslides and Engineered Slope. 30 June–4 July, 2008, Xi’an, China, Taylor and Francis Group, London, vol. 1, pp. 415–420

  72. Lan, H.X., Martin, C.D., Zhou, C.H.: Numerical modeling of debris flow kinematics using discrete element method combined with GIS. Landslides and engineered slopes: from the past to the future. In: Chen et al. (eds.) Proceedings of the 10th Int. Symp. on Landslides and Engineered Slope. 30 June–4 July, 2008, Xi’an, China, Taylor and Francis Group, London, vol. 1, pp. 769–775

  73. Poisel, R., Preh, A.: 3D landslide run out modelling using the particle Flow Code PFC3D. Landslides and engineered slopes: from the past to the future. In: Chen et al. (eds.) Proceedings of the 10th Int. Symp. on Landslides and Engineered Slope. 30 June–4 July, 2008, Xi’an, China, Taylor and Francis Group, London, vol. 1, pp. 873–879

  74. Jiang M.J., Yu H.-S., Harris D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  75. Jiang M.J., Leroueil S., Zhu H.H., Yu H.-S., Konrad J.M.: Two-dimensional discrete element theory for rough particles. Intern. J. Geomech. (ASCE) 9(1), 20–33 (2009)

    Article  Google Scholar 

  76. Jiang M.J., Yan H.B., Zhu H.H., Utili S.: Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput. Geotech. 38(5), 14–29 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M., Murakami, A. Distinct element method analyses of idealized bonded-granulate cut slope. Granular Matter 14, 393–410 (2012). https://doi.org/10.1007/s10035-012-0347-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0347-y

Keywords

Navigation