Skip to main content

Advertisement

SpringerLink
Dynamics of an intruder in dense granular fluids
Download PDF
Download PDF
  • Original Paper
  • Open Access
  • Published: 09 February 2012

Dynamics of an intruder in dense granular fluids

  • Andrea Fiege1,2,
  • Matthias Grob1 &
  • Annette Zippelius1,2 

Granular Matter volume 14, pages 247–252 (2012)Cite this article

  • 816 Accesses

  • 22 Citations

  • Metrics details

Abstract

We investigate the dynamics of an intruder pulled by a constant force in a dense two-dimensional granular fluid by means of event-driven molecular dynamics simulations. In a first step, we show how a propagating momentum front develops and compactifies the system when reflected by the boundaries. To be closer to recent experiments (Candelier and Dauchot in Phys Rev 81(1):011304, 2010; Phys Rev 103(12):128001, 2009), we then add a frictional force acting on each particle, proportional to the particle’s velocity. We show how to implement frictional motion in an event-driven simulation. This allows us to carry out extensive numerical simulations aiming at the dependence of the intruder’s velocity on packing fraction and pulling force. We identify a linear relation for small and a nonlinear regime for high pulling forces and investigate the dependence of these regimes on granular temperature.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Candelier R., Dauchot O.: Journey of an intruder through the fluidization and jamming transitions of a dense granular media. Phys. Rev. E 81(1), 011304 (2010)

    Article  ADS  Google Scholar 

  2. Candelier R., Dauchot O.: Creep motion of an intruder within a granular glass close to jamming. Phys. Rev. Lett. 103(12), 128001 (2009)

    Article  ADS  Google Scholar 

  3. Hastings M., Olson Reichhardt C., Reichhardt C.: Depinning by fracture in a glassy background. Phys. Rev. Lett. 90(9), 98302 (2003)

    Article  ADS  Google Scholar 

  4. Habdas A., Schaar D., Levitt A., Weeks E.: Forced motion of a probe particle near the colloidal glass transition. EPL (Europhys. Lett.) 67, 477 (2004)

    Article  ADS  Google Scholar 

  5. Gazuz I., Puertas A., Voigtmann T., Fuchs M.: Active and nonlinear microrheology in dense colloidal suspensions. Phys. Rev. Lett. 102, 248302 (2009)

    Article  ADS  Google Scholar 

  6. Zik O., Stavans J., Rabin Y.: Mobility of a sphere in vibrated granular media. EPL (Europhys. Lett.) 17(4), 315 (1992)

    Article  ADS  Google Scholar 

  7. Sarracino A., Villamaina D., Gradenigo G., Puglisi A.: Irreversible dynamics of a massive intruder in dense granular fluids. EPL (Europhys. Lett.) 92, 34001 (2010)

    Article  ADS  Google Scholar 

  8. Olson Reichhardt C., Reichhardt C.: Fluctuations, jamming, and yielding for a driven probe particle in disordered disk assemblies. Phys. Rev. E 82, 051306 (2010)

    Article  ADS  Google Scholar 

  9. Kranz W., Sperl M., Zippelius A.: Glass transition for driven granular fluids. Phys. Rev. Lett. 104, 225701 (2010)

    Article  ADS  Google Scholar 

  10. Oger, L., Annic, C., Bideau, D., Dai, R., Savage, S.: Diffusion of two-dimensional particles on an air table. J. Stat. Phys. 82, 1047 (1996). doi:10.1007/BF02179801

    Google Scholar 

  11. Abate A.R., Durian D.J.: Approach to jamming in an air-fluidized granular bed. Phys. Rev. E 74(3), 031308 (2006)

    Article  ADS  Google Scholar 

  12. Abate A.R., Durian D.J.: Topological persistence and dynamical heterogeneities near jamming. Phys. Rev. E 76(2), 021306 (2007)

    Article  ADS  Google Scholar 

  13. Olafsen J.S., Urbach J.S.: Two-dimensional melting far from equilibrium in a granular monolayer. Phys. Rev. Lett. 95(9), 098002 (2005)

    Article  ADS  Google Scholar 

  14. Reis P.M., Ingale R.A., Shattuck M.D.: Crystallization of a quasi-two-dimensional granular fluid. Phys. Rev. Lett. 96(25), 258001 (2006)

    Article  ADS  Google Scholar 

  15. Reis P.M., Ingale R.A., Shattuck M.D.: Caging dynamics in a granular fluid. Phys. Rev. Lett. 98(18), 188301 (2007)

    Article  ADS  Google Scholar 

  16. Fiege A., Aspelmeier T., Zippelius A.: Long-time tails and cage effect in driven granular fluids. Phys. Rev. Lett. 102(9), 098001 (2009)

    Article  ADS  Google Scholar 

  17. Aspelmeier T., Huthmann M., Zippelius A.: Free cooling of particles with rotational degrees of freedom. In: Pöschel, T., Luding, S. (eds) Granular Gases Lecture Notes in Physics vol 564., pp. 31–58. Springer, Berlin/Heidelberg (2001)

    Google Scholar 

  18. Kranz, W.T.: Dense granular fluids and the granular glass transition. Ph.D. thesis, Georg-August-Universität Göttingen (2011)

  19. Boon J., Yip S.: Molecular Hydrodynamics. Dover Pubns, New York (1991)

    Google Scholar 

  20. Alder B., Wainwright T.: Studies in molecular dynamics. i. general method. J. Chem. Phys. 31, 459 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  21. Lubachevsky B.D.: How to simulate billiards and similar systems. J. Comput. Phys 94(2), 255 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Gholami I., Fiege A., Zippelius A.: Slow dynamics and precursors of the glass transition in granular fluids. Phys. Rev. E 84(3), 031305 (2011)

    Article  ADS  Google Scholar 

  23. Jabeen Z., Rajesh R., Ray P.: Universal scaling dynamics in a perturbed granular gas. EPL (Europhys. Lett) 89, 34001 (2010)

    Article  ADS  Google Scholar 

  24. Gomez, L., Turner, A., van Hecke, M., Vitelli, V.: Shock waves in jammed solids. In APS Meeting Abstracts, vol. 1, p. 13007 (2011)

Download references

Acknowledgements

We thank T. Aspelmeier, I. Gholami, C. Heussinger, T. Kranz and S. Ulrich for many useful discussions. We furthermore acknowledge support from the DFG by FOR 1394.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

  1. Institut für Theoretische Physik, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany

    Andrea Fiege, Matthias Grob & Annette Zippelius

  2. Max-Planck-Institut für Dynamik und Selbstorganisation, Bunsenstr. 10, 37073, Göttingen, Germany

    Andrea Fiege & Annette Zippelius

Authors
  1. Andrea Fiege
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Matthias Grob
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Annette Zippelius
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Andrea Fiege.

Additional information

Dedicated to Isaac Goldhirsch.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Fiege, A., Grob, M. & Zippelius, A. Dynamics of an intruder in dense granular fluids. Granular Matter 14, 247–252 (2012). https://doi.org/10.1007/s10035-011-0309-9

Download citation

  • Received: 29 August 2011

  • Published: 09 February 2012

  • Issue Date: April 2012

  • DOI: https://doi.org/10.1007/s10035-011-0309-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Granular medium
  • Drag force
  • Event driven simulation with friction
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.