Skip to main content
Log in

DEM simulations and experiments for projectile impacting two-dimensional particle packings including dissimilar material layers

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The dynamic response of a two-dimensional ordered particle packing composed of nylon-66 spheres 6.35 mm in diameter impacted by a spherical projectile was investigated both experimentally and numerically using the discrete element method (DEM). First, the influence of the number of layers in the particle packing on wave propagation and post-impact movement were examined. As the number of layers increased, the contact forces reaching the base plate decreased together with the rebound velocity of the projectiles. Next, the effects of dissimilar material layers were examined. The spheres in one or two layers of the particle packing were replaced with spheres made of dissimilar materials, that is, alumina ceramic (Al2O3) or steel, and it was found that the scattering of the nylon spheres above the dissimilar material layers increased. The experimental results obtained using force sensors at the base plate showed that the dissimilar material layers reduced the contact forces at the base plate. Furthermore, as the mass of the dissimilar material spheres increased, the magnitude of the contact forces at the base plate decreased, and the rebound velocity of the projectile increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nesterenko V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 743–773 (1983)

    ADS  Google Scholar 

  2. Nesterenko V.F.: Dynamics of Heterogeneous Materials, pp. 1–81. Springer, Berlin (2001)

    Google Scholar 

  3. Rosas A., Romero A.H., Nesterenko V.F., Lindenberg K.: Short-pulse dynamics in strongly nonlinear dissipative granular chains. Phys. Rev. E 78(5), 051303 (2008)

    Article  ADS  Google Scholar 

  4. Coste C., Falcon E., Fauve S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56(5), 6104–6117 (1997)

    Article  ADS  Google Scholar 

  5. Nakagawa M., Agui J.H., Wu D.T., Extramiana D.V.: Impulse dispersion in a tapered granular chain. Granular Matter 4(4), 167–174 (2003)

    Article  Google Scholar 

  6. Job S., Melo F., Sokolow A., Sen S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94(17), 178002 (2005)

    Article  ADS  Google Scholar 

  7. Shukla A., Damonia C.: Experimental investigation of wave velocity and dynamic contact stresses in an assembly of disks. Exp. Mech. 27(3), 268–281 (1987)

    Article  Google Scholar 

  8. Britan, A., Glam, B., Igra, O., Ben-dor, G.: Experimental investigation of the stress wave propagation along a single straight chain of photo-elastic discs. In: Proceedings of SPIE, No. 5580, pp. 193–202 (2005)

  9. Britan, A., Ben-dor, G., Igra, O., Tanaka, K., Nishida, M.: Dynamics of stress wave propagation through a disc and a chain of discs. In: Proceedings of shock waves, pp. 779–784 (2006)

  10. Rossmanith H.P., Shukla A.: Photoelastic investigation of dynamic load transfer in granular media. Acta. Mech. 42(3–4), 211–225 (1982)

    Article  Google Scholar 

  11. Sen S., Sinkovits R.S.: Sound propagation in impure granular columns. Phys. Rev. E 54(6), 6857–6865 (1996)

    Article  ADS  Google Scholar 

  12. Gilles, B., Coste, C.: Nonlinear elasticity of a 2D regular array of beads. In: Proceedings of powders and grains, pp. 113–116 (2001)

  13. Mouraille, O., Mulder, W.A., Luding, S.: Sound wave acceleration in granular materials. J. Stat. Mech. Theory Exp., P07023 (2006)

  14. Gusev V.E., Aleshin V., Tournat V.: Acoustic waves in an elastic channel near the free surface of granular media. Phys. Rev. Lett. 96, P214301 (2006)

    Article  ADS  Google Scholar 

  15. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  16. Nishida, M., Tanaka, K., Ikeda, Y., Tanaka, Y.: Stress wave propagation in aggregated particles induced by an internally bursting load. In: Proceedings of shock waves, pp. 791–796 (2006)

  17. Rioual F., Valance A., Bideau D.: Experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E 62(2), 2450–2459 (2000)

    Article  ADS  Google Scholar 

  18. Oger L., Ammi M., Valance A., Beladjine D.: Discrete element method studies of the collision of one rapid sphere on 2D and 3D packings. Eur. Phys. J. E 17(4), 467–476 (2005)

    Article  Google Scholar 

  19. Beladjine D., Ammi M., Oger L., Valance A.: Collision process between an incident bead and a three-dimensional granular packing. Phys. Rev. E 75(6), 061305 (2007)

    Article  ADS  Google Scholar 

  20. Thornton C., Randall C.: Application of Theoretical Contact Mechanics to Solid Particle System Simulation. In: Satake, M., Jenkins, J.T. (eds) Micromechanics of Granular Materials, pp. 133–142. Elsevier, Amsterdam (1988)

    Google Scholar 

  21. Walsh A.M., Holloway K.E., Habdas P., de Bruyn J.R.: Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91(10), P104301 (2003)

    Article  ADS  Google Scholar 

  22. Ambroso M.A., Kamien R.D., Durian D.J.: Dynamics of shallow impact cratering. Phys. Rev. E 72(4), P041305 (2005)

    Article  ADS  Google Scholar 

  23. Yamamoto S., Wada K., Okabe N., Matsui T.: Transient crater growth in granular targets: an experimental study of low velocity impacts into glass sphere targets. Icarus 183(1), 215–224 (2006)

    Article  ADS  Google Scholar 

  24. Takagi, Y., Hasegawa, S., Yano, H., Yamamoto, S., Sugita, S., Teramoto, K., Honda, C., Kurosawa, K., Nakada, T., Abe, M., Fujiwara, A.: Impact cratering experiments in microgravity environment. In: Proceedings of lunar and planetary science, Vol. XXXVIII, 1634pdf (2007)

  25. Bourrier F., Nicot F., Darve F.: Physical processes within a 2D granular layer during an impact. Granular Matter 10(6), 415–437 (2008)

    Article  Google Scholar 

  26. Stronge W.J.: Impact Mechanics, pp. 86–89. Cambridge University Press, Cambridge, MA (2000)

    MATH  Google Scholar 

  27. Tanaka T., Ishida T., Tsuji Y.: Direct numerical simulation of granular plug flow in a horizontal pipe. Trans. Jpn. Soc. Mech. Eng. Ser. B 57(534), 459–463 (1991)

    Google Scholar 

  28. Tanaka K., Nishida M., Kunimochi T., Takagi T.: Discrete element simulation and experiment for dynamic response of two-dimensional granular matter to the impact of a spherical projectile. Powder Technol. 124(1), 160–173 (2002)

    Article  Google Scholar 

  29. Nishida M., Tanaka K., Matsumoto Y.: Discrete element method simulation on the restitutive characteristics of a steel spherical projectile from a particulate aggregation. JSME Int. J. A 47(3), 438–447 (2004)

    Article  Google Scholar 

  30. Thornton C.: Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. Trans. ASME J. Appl. Mech. 64, 383–386 (1997)

    Article  MATH  Google Scholar 

  31. Mindlin R.D., Deresiewicz H.: Elastic spheres in contact under varying oblique forces. Trans. ASME J. Appl. Mech. 20, 327–344 (1953)

    MATH  MathSciNet  Google Scholar 

  32. Johnson K.L.: Contact Mechanics, pp. 361–369. Cambridge University Press, Cambridge, MA (1985)

    MATH  Google Scholar 

  33. Melo F., Job S., Santibanez F., Tapia F.: Experimental evidence of shock mitigation in a hertzian apered chain. Phys. Rev. E 73, P041305 (2006)

    Article  ADS  Google Scholar 

  34. Nesterenko V.F., Lazaridi A.N., Sibiryakov E.B.: The decay of soliton at the contact of two acoustic vacuums. J. Appl. Mech. Tech. Phys. 36(2), 166–1683 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Nishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, M., Tanaka, Y. DEM simulations and experiments for projectile impacting two-dimensional particle packings including dissimilar material layers. Granular Matter 12, 357–368 (2010). https://doi.org/10.1007/s10035-010-0173-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0173-z

Keywords

Navigation