Abstract
The contacts between cohesive, frictional particles with sizes in the range 0.1–10 μm are the subject of this study. Discrete element model (DEM) simulations rely on realistic contact force models—however, too much details make both implementation and interpretation prohibitively difficult. A rather simple, objective contact model is presented, involving the physical properties of elastic–plastic repulsion, dissipation, adhesion, friction as well as rolling- and torsion-resistance. This contact model allows to model bulk properties like friction, cohesion and yield-surfaces. Very loose packings and even fractal agglomerates have been reported in earlier work. The same model also allows for pressure-sintering and tensile strength tests as presented in this study.
References
Allen M.P. and Tildesley D.J. (1987). Computer Simulation of Liquids. Oxford University Press, Oxford
Bartels G., Unger T., Kadau D., Wolf D.E. and Kertesz J. (2005). The effect of contact torques on porosity of cohesive powders. Granular Matter 7: 139
Bashir Y.M. and Goddard J.D. (1991). A novel simulation method for the quasi-static mechanics of granular assemblages. J Rheol 35(5): 849–885
Berger, F.: Das Gesetz des Kraftverlaufes beim Stoß. Friedr. Vieweg & Sohn AG (1924)
Brendel L. (2006). Modeling of caked contacts in DEMs. Chem Eng Technol 29(11): 1355–1359
Brendel, L., Dippel, S.: Lasting contacts in molecular dynamics simulations. In: Herrmann, H.J., Hovi, J.P., Luding, S. (eds) Physics of Dry Granular Media. Kluwer, Dordrecht, p 313 (1998)
Brilliantov N.V., Spahn F., Hertzsch J.M. and Pöschel T. (1996). Model for collisions in granular gases. Phys Rev E 53(5): 5382
Butt H.J., Cappella B. and Kappl M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59(1–6): 1–152
Castellanos A. (2005). The relationship between attractive interparticle forces and bulk behavior in dry and uncharged fine powders. Adv. Phys. 54(4): 263–376
Coste, C., Falcon, E., Fauve, S.: Propagations d’ondes non-linéaires dans une chaîne de bille s en contact de Hertz. In: Petit C., Pijaudier-Cabot G., Reynouard J.M. (eds) Des géomatériaux aux ouvrages: expérimentations et modélis ations, Hermes, Paris, pp 33–52 (in french, 1995)
Coste C., Falcon E. and Fauve S. (1997). Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56(5): 6104–6117
Cundall P.A. and Strack O.D.L. (1979). A discrete numerical model for granular assemblies. Géotechnique 29(1): 47–65
David, C.T., Rojo, R.G., Herrmann, H.J., Luding, S.: Hysteresis and creep in powders and grains. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains 2005, Balkema, Leiden, Netherlands, pp. 291–294 (2005)
David C.T., Garcia-Rojo R., Herrmann H.J. and Luding S. (2007). Powder flow testing with 2d and 3d biaxial and triaxial simulations. Particle Particle Syst. Charact. 24(1): 29–33
Derjaguin B.V., Muller V.M. and Toporov Y.P. (1975). Effect of contact deformation on adhesion of particles. J. Colloid Interf. Sci. 53: 314–326
Dintwa E., van Zeebroeck M., Tijskens E. and Ramon H. (2005). Torsion of viscoelastic spheres in contact. Granular Matter 7(2–3): 169–179
Els, D.: Definition of roll velocity for spherical particles. Granular Matter (2006, submitted)
Foerster S.F., Louge M.Y., Chang H. and Allia K. (1994). Measurements of the collision properties of small spheres. Phys. Fluids 6(3): 1108–1115
Grof Z., Lawrence C.J. and Stepanek F. (2008). Computer simulation of evolving capillary bridges in granular media. Granular Matter 10(2): 93–103
Heim L.O., Butt H.J., Blum J. and Schrapler R. (2008). A new method for the analysis of compaction processes in high-porosity agglomerates. Granular Matter 10(2): 89–91
Herrmann, H.J., Hovi, J.P., Luding, S.: (eds) Physics of dry granular media—NATO ASI Series E 350. Kluwer, Dordrecht (1998)
Hertz H. (1882). Über die Berührung fester elastischer K örper. J für die reine u angew Math 92: 136
Janssen H.A. (1895). Versuche über Getreidedruck in Silozellen. Zeitschr d Vereines deutscher Ingenieure 39(35): 1045–1049
Jenkins J.T. and Koenders M.A. (2005). Hydrodynamic interaction of rough spheres. Granular Matter 7(1): 13–18
Johnson K.L. (1989). Contact Mechanics. Cambridge University Press, Cambridge
Johnson K.L., Kendall K. and Roberts A.D. (1971). Surface energy and contact of elastic solids. Proc R Soc Lond Ser A 324(1558): 301
Johnson P.C. and Jackson R. (1987). Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J Fluid Mech 176: 67
Kadau D., Schwesig D., Theuerkauf J. and Wolf D.E. (2006). Influence of particle elasticity in shear testers. Granular Matter 8: 34–40
Kafui K.D. and Thornton C. (2000). Numerical simulations of impact breakage of spherical crystalline agglomerate. Powder Technol 109: 113–132
Kappl, M., Heim, L., Butt, H.J., Luding, S., Tykhoniuk, R., Tomas, J.: From grains to powders: from single particle contact mechanics measurements to bulk powder properties. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains 2005, Balkema, Leiden, Netherlands, pp. 493–497 (2005)
Kun F. and Herrmann H.J. (2000). Damage development under gradual loading of composites. J. Mater. Sci. 35(18): 4685–4693
Kuwabara G. and Kono K. (1987). Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26(8): 1230–1233
Labous L., Rosato A.D. and Dave R. (1997). Measurements of collision properties of spheres using high-speed video analysis. Phys. Rev. E 56: 5715
Lätzel M., Luding S., Herrmann H.J., Howell D.W. and Behringer R.P. (2003). Comparing simulation and experiment of a 2d granular couette shear device. Eur. Phys. J. Eng. 11(4): 325–333
Leroy B. (1985). Collision between two balls accompanied by deformation: A qualitative approach to Hertz’s theory. Am. J. Phys. 53(4): 346–349
Lian G., Adams M.J. and Thornton C. (1996). Elastohydrodynamic collisions of solid spheres. J Fluid. Mech. 311: 141
Lorenz A., Tuozzolo C. and Louge M.Y. (1997). Measurements of impact properties of small, nearly spherical particles. Exp. Mech. 37(3): 292–297
Lubachevsky B.D. (1991). How to simulate billards and similar systems. J. Comp. Phys. 94(2): 255
Luding S. (1998). Collisions and contacts between two particles. In: Herrmann, H.J., Hovi, J.P. and Luding, S. (eds) Physics of dry granular media—NATO ASI Series E350, pp 285. Kluwer, Dordrecht
Luding, S.: Micro-macro models for anisotropic granular media. In: Vermeer, P.A., Ehlers, W., Herrmann, H.J., Ramm, E. (eds) Modelling of cohesive-frictional Materials, Balkema, pp 195–206 (ISBN 04 1536 023 4) (2004a)
Luding S. (2004b). Molecular dynamics simulations of granular materials. In: Hinrichsen, H. and Wolf, D.E. (eds) The Physics of Granular Media, pp 299–324. Weinheim, Wiley VCH
Luding S. (2005). Anisotropy in cohesive, frictional granular media. J. Phys. Condens. Matter 17: S2623–S2640
Luding, S.: About contact force-laws for cohesive frictional materials in 2d and 3d. In: Walzel, P., Linz, S., Krülle, C., Grochowski, R. (eds) Behavior of Granular Media, Shaker Verlag, pp 137–147, band 9, Schriftenreihe Mechanische Verfahrenstechnik, ISBN 3-8322-5524-9 (2006)
Luding, S.: Contact models for very loose granular materials. In: Eberhard P. (ed) Symposium on Multiscale Problems in Multibody System Contacts, Springer, Heidelberg, pp. 135–150. ISBN 978-1-4020-5980-3 (2007)
Luding, S., Herrmann, H.J.: Micro-macro transition for cohesive granular media. In: Diebels S. (Ed.) Bericht Nr. II-7, Inst. für Mechanik, Universität Stuttgart (2001)
Luding, S., Suiker, A.: Self-healing of damaged particulate materials through sintering. Philos. Mag. (2008, submitted)
Luding S., Clément E., Blumen A., Rajchenbach J. and Duran J. (1994). Anomalous energy dissipation in molecular dynamics simulations of grains: The “detachment effect”. Phys. Rev. E 50: 4113
Luding S., Clément E., Blumen A., Rajchenbach J. and Duran J. (1994). The onset of convection in molecular dynamics simulations of grains. Phys. Rev. E 50: R1762
Luding S., Clément E., Blumen A., Rajchenbach J. and Duran J. (1994). Studies of columns of beads under external vibrations. Phys. Rev. E 49(2): 1634
Luding S., Manetsberger K. and Muellers J. (2005). A discrete model for long time sintering. J. Mech. Phys. Solids 53(2): 455–491
Luding, S., Suiker, A., Kadashevich, I.: Discrete element modeling of self-healing processes in damaged particulate materials. In: Schmets, A.J.M., van der Zwaag, S. (eds) Proceedings of the 1st International Conference on Self Healing Materials, Springer series in Material Science, Berlin, Germany (ISBN 978-1-4020-6249-0 (2007)
Matuttis H.G., Luding S. and Herrmann H.J. (2000). Discrete element methods for the simulation of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109: 278–292
Mindlin R.D. (1949). Compliance of elastic bodies in contact. J. Appl. Mech. 16: 259
Mindlin R.D. and Deresiewicz H. (1953). Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20: 327
Moreau, J.J.: New computation methods in granular dynamics. In: Powders and Grains, vol. 93. Balkema, Rotterdam, p 227 (1993)
Moreau J.J. (1994). Some numerical methods in multibody dynamics: application to granular materials. Eur J Mech A 13: 93
Oda M. and Iwashita K. (2000). Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38: 1713–1740
Oda M. and Kazama H. (1998). Microstructure of shear bands and its relation to the mechanism of dilatancy and failure of dense granular soils. Géotechnique 48(4): 465–481
Oda, M., Iwashita, K., Kazama, H.: Micro-structure developed in shear bands of dense granular soils and its computer simulation—mechanism of dilatancy and failure. In: Fleck, N.A., Cocks, A.C.E. (eds) IUTAM Symposium on Mechanics of Granular and Porous Materials. Kluwer, Dordrecht, pp 353–364 (1997)
Pao Y.H. (1955). Extension of the Hertz theory of impact to the viscoelastic case. J. Appl. Phys. 26: 1083
Pöschel T. and Schwager T. (2005). Computational Granular Dynamics. Springer, Berlin
Pöschel T., Schwager T. and Brilliantov N.V. (1999). Rolling friction of a hard cylinder on a viscous plane. Eur. J. Phys. 10: 169–175
Radjai F., Jean M., Moreau J.J. and Roux S. (1996). Force distribution in dense two-dimensional granular systems. Phys. Rev. Lett. 77(2): 274
Radjai F., Schäfer J., Dippel S. and Wolf D. (1997). Collective friction of an array of particles: A crucial test for numerical algorithms. J. Phys. I France 7: 1053
Radjai F., Wolf D.E., Jean M. and Moreau J.J. (1998). Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1): 61–64
Raman C.V. (1918). The photographic study of impact at minimal velocities. Phys. Rev. 12: 442–447
Rapaport D.C. (1995). The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge
Richefeu V., Radjai F. and Youssoufi M.S.E. (2006). Stress transmission in wet granular materials. Eur. Phys. J. Eng. 21(4): 359–369
Röck M., Morgeneyer M., Schwedes J., Brendel L., Wolf D.E. and Kadau D. (2008). Visualization of shear motions of cohesive powders in the true biaxial shear tester. Partic. Sci. Technol. 26: 43–54
Roux, S.: Quasi-static contacts. In: Herrmann, H.J., Hovi, J.P., Luding, S. (eds) Physics of dry granular media—NATO ASI Series E 350, Kluwer, Dordrecht, p. 267 (1998)
Sadd M.H., Tai Q.M. and Shukla A. (1993). Contact law effects on wave propagation in particulate materials using distinct element modeling. Int. J. Non-Lin. Mech. 28(2): 251
Savkoor A.R. and Briggs G.A.D. (1977). The effect of tangential force on the contact of elastic solids in adhesion. Proc. R. Soc. Lond. A 356: 103
Schäfer J., Dippel S. and Wolf D.E. (1996). Force schemes in simulations of granular materials. J. Phys. I France 6: 5–20
Severens I.E.M., de Ven A.A.F.V., Wolf D.E. and Mattheij R.M.M. (2006). Discrete element method simulations of toner behavior in the development nip of the oce direct imaging print process. Granular Matter 8(3–4): 137–150
Sinkovits R.S. and Sen S. (1995). Nonlinear dynamics in granular columns. Phys. Rev. Lett. 74(14): 2686
Spahn F., Hertzsch J.M. and Brilliantov N.V. (1995). The role of particle collisions for the dynamics in planetary rings. Chaos Solitons Fractals 5: 1945
Sperl M. (2006). Experiments on corn pressure in silo cells. Translation and comment of Janssen’s paper from 1895. Granular Matter 8(2): 59–65
Suiker A.S.J. and Fleck N.A. (2004). Frictional collapse of granular assemblies. J. Appl. Mech. 71: 350–358
Tanakov M.Y., Trusov L.I., Belyi M.V., Bulgakov V.E. and Gryaznov V.G. (1993). Elastically stressed state in small particles under conditions of Hertzian contacts. J. Phys. D 26: 997
Thornton C. (1997). Force transmission in granular media. KONA Powder Particle 15: 81–90
Thornton C. (2000). Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1): 43–53
Thornton C. and Antony S.J. (2000). Quasi-static deformation of a soft particle system. Powder Technol. 109(1–3): 179–191
Thornton, C., Randall, C.W.: Applications of theoretical contact mechanics to solid particle system simulation. In: Micromechanics of granular media. Elsevier, Amsterdam (1988)
Thornton C. and Yin K.K. (1991). Impact of elastic spheres with and without adhesion. Powder Technol. 65: 153
Thornton, C., Zhang, L.: A DEM comparison of different shear testing devices. In: Kishino, Y. (ed) Powders and Grains 2001. Balkema, Rotterdam, pp. 183–190 (2001)
Tighe B.P. and Sperl M. (2007). Pressure and motion of dry sand: translation of Hagen’s paper from 1852. Granular Matter 9(3/4): 141–144
Tomas J. (2000). Particle adhesion fundamentals and bulk powder consolidation. KONA 18: 157–169
Tomas J. (2004). Fundamentals of cohesive powder consolidation and flow. Granular Matter 6(2/3): 75–86
Tykhoniuk R., Tomas J. and Luding S. (2006). A microstructure-based simulation environment on the basis of an interface enhanced particle model. Granular Matter 8(3/4): 159–174
Valverde J.M. and Castellanos A. (2007). Compaction of fine powders: from fluidized agglomerates to primary particles. Granular Matter 9(1–2): 19–24
Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Luding, S., Ramm, E. (eds) Continuous and Discontinuous Modelling of Cohesive Frictional Materials. Lecture Notes in Physics, vol. 568. Springer, Berlin (2001)
Vermeer, P.A., Ehlers, W., Herrmann, H.J., Ramm, E.: (eds) Modelling of Cohesive-frictional materials, Balkema, Leiden, Netherlands (ISBN 04 1536 023 4) (2004)
Walton K. (1978). The oblique compression of two elastic spheres. J. Mech. Phys. Solids 26: 139
Walton O.R. (1989). Force models for particle-dynamics simulations of granular materials. NATO ASI Ser. E Appl. Sci. 287: 367–379
Walton, O.R.: Effects of interparticle friction and particle shape on dynamic angles of repose via particle-dynamics simulation. In: Workshop: Mechanics and Statistical Physics of Particulate Materials (1994)
Walton, O.R.: Elastic frictional contact models based on analysis of Mindlin (1949), private communication (1995a)
Walton O.R. (1995). Force models for particle-dynamics simulations of granular materials. In: Guazzelli, E. and Oger, L. (eds) Mobile particulate systems, pp 367. Kluwer, Dordrecht
Walton O.R. and Braun R.L. (1986). Viscosity, granular-temperature and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30(5): 949–980
Zhu C.Y., Shukla A. and Sadd M.H. (1991). Prediction of dynamic contact loads in granular assemblies. J. Appl. Mech. 58: 341
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Luding, S. Cohesive, frictional powders: contact models for tension. Granular Matter 10, 235–246 (2008). https://doi.org/10.1007/s10035-008-0099-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10035-008-0099-x
Keywords
- Granular materials
- Molecular dynamics (MD) and discrete elementmodel (DEM) force-laws
- Friction
- Rolling- and torsion-resistance
- Adhesion
- Plastic deformation