Skip to main content

Sintering—Pressure- and Temperature-Dependent Contact Models

  • Chapter
  • First Online:
Particles in Contact

Abstract

Sintering granular materials involves the application of pressure and temperature to make the particulate material a permanent solid. In order to better understand this complex process, the pressure-, temperature-, and time-dependent contact behaviour of micron-sized particles has been studied in close collaboration by the groups of Luding, Staedler and Kappl within the DFG SPP PiKo. This chapter summarises the modelling advances made during the project, with direct links given to the experimental results. Two aspects have been studied: (a) the dependence of the elastic as well as frictional contact forces and torques on an applied normal pressure; and (b) the formation and evolution of adhesive bonds between particles during heat-sintering. Both contact models have been experimentally calibrated and validated, using advanced techniques such as nanoindentation and AFM. As materials, borosilicate particles were used to study the pressure-dependency, while polystyrene particles were chosen due to their low glass transition temperature to study the temperature-dependency near the transition. Combining both aspects provides a multi-purpose contact model that allows the simulations of a wide range of sinter and agglomeration processes for a variety of practically relevant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besler, R., Rossetti da Silva, M., Rosario, J.J., Dosta, M., Heinrich, S., Janssen, R.: Sintering simulation of periodic macro porous alumina. J. Am. Ceram. Soc. 98(11), 3496–3502 (2015)

    Article  CAS  Google Scholar 

  2. Bierwisch, C., Polfer, P.: Scaling laws for implicit viscosities in smoothed particle hydrodynamics. In: EPJ Web of Conferences, vol. 140, p. 15008 (2017)

    Article  Google Scholar 

  3. Breinlinger, T., Schubert, R., Hashibon, A., Kraft, T.: Modelling die filling for powders with complex rheology: a new DEM contact-model. In: Proceedings of 19th International Plansee Seminar. Plansee Group Service GmbH, Reutte, Austria (2017)

    Google Scholar 

  4. Brendel, L., Török, J., Kirsch, R., Bröckel, U.: A contact model for the yielding of caked granular materials. Granul. Matter 13(6), 777–786 (2011)

    Article  Google Scholar 

  5. de Gennes, P.G.: From rice to snow. In: Nishina Memorial Lectures. Volume 746 of Lecture Notes in Physics, pp. 297–318. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  6. Ding, W., Howard, A.J., Murthy Peri, M.D., Cetinkaya, C.: Rolling resistance moment of microspheres on surfaces: contact measurements. Philos. Mag., 87(36), 5685–5696 (2007)

    Article  CAS  Google Scholar 

  7. Fischer-Cripps, A.C.: A review of analysis methods for sub-micron indentation testing. Vacuum 58(4), 569–585 (2000)

    Article  CAS  Google Scholar 

  8. Freedonia: World Material Handling Products. Freedonia Group Inc. (2012)

    Google Scholar 

  9. Frenkel, J.A.: Viscous flow of crystalline bodies. J. Phys. 9(5), 385–391 (1945)

    Google Scholar 

  10. Fuchs, R., Meyer, J., Staedler, T., Jiang, X.: Sliding and rolling of individual micrometre sized glass particles on rough silicon surfaces. Tribol. Mater. Surf. Interfaces 7(2), 103–107 (2013)

    Article  CAS  Google Scholar 

  11. Fuchs, R., Weinhart, T., Meyer, J., Zhuang, H., Staedler, T., Jiang, X., Luding, S.: Rolling, sliding and torsion of micron-sized silica particles: experimental, numerical and theoretical analysis. Granul. Matter 16(3), 281–297 (2014)

    Article  CAS  Google Scholar 

  12. Fuchs, R., Ye, M., Weinhart, T., Luding, S., Butt, H.-J., Kappl, M.: Sintering of polymer particle-experiments and modelling of temperature- and time-dependent contacts. In: Proceedings of the International Congress on Particle Technology, PARTEC (2016)

    Google Scholar 

  13. Fuchs, R., Weinhart, T., Ye, M., Luding, S., Butt, H.-J., Kappl, M.: Initial stage sintering of polymer particles. In: EPJ Web of Conferences, vol. 140, p. 13012. EDP Sciences (2017)

    Google Scholar 

  14. Harshe, Y.M., Lattuada, M.: Breakup of clusters in simple shear flow. J. Phys. Chem. B 120(29), 7244–7252 (2008)

    Article  Google Scholar 

  15. Hashibon, A.: A DEM model for history dependent powder flows. Comput. Part. Mech. 3(4), 437 (2016)

    Article  Google Scholar 

  16. Hertz, H.: Über die Berührung fester elastischer Körper. J. für die reine u. angew. Math. 92 (1882)

    Google Scholar 

  17. Imole, O.I., Kumar, N., Magnanimo, V., Luding, S.: Hydrostatic and shear behavior of frictionless granular assemblies under different deformation conditions. KONA Powder Part. J. 30, 84–108 (2013)

    Article  CAS  Google Scholar 

  18. Kuhn, M.R., Bagi, K.: Contact rolling and deformation in granular media. Int. J. Solids Struct. 41(21), 5793–5820 (2004)

    Article  Google Scholar 

  19. Laube, J., Drmann, M., Schmid, H.-J., Mdler, L., Colombi Ciacchi, L.: Dependencies of the adhesion forces between TiO$_{2}$ nanoparticles on size and ambient humidity. J. Phys. Chem. C 121(28), 15294–15303 (2017)

    Article  CAS  Google Scholar 

  20. Liu, D.L., Martin, J., Burnham, N.A.: Optimal roughness for minimal adhesion. Appl. Phys. Lett. 91(4) (2007)

    Article  Google Scholar 

  21. Luding, S.: Collisions & contacts between two particles. NATO ASI Ser. E Appl. Sci. Adv. Study Inst. 350, 285–304 (1998)

    Google Scholar 

  22. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10(4), 235–246 (2008)

    Article  Google Scholar 

  23. Luding, S., Manetsberger, K., Müllers, J.: A discrete model for long time sintering. J. Mech. Phys. Solids 53(2), 455–491 (2005)

    Article  Google Scholar 

  24. Mader-Arndt, K., Kutelova, Z., Fuchs, R., Meyer, J., Staedler, T., Hintz, W., Tomas, J.: Single particle contact versus particle packing behavior: model based analysis of chemically modified glass particles. Granul. Matter 16(3), 359–375 (2014)

    Article  CAS  Google Scholar 

  25. Marigo, M., Stitt, E.H.: DEM for industrial applications. KONA Powder Part. J. 32, 236–252 (2015)

    Article  Google Scholar 

  26. Mazur, S., Beckerbauer, R., Buckholz, J.: Particle size limits for sintering polymer colloids without viscous flow. Langmuir 13(16), 4287–4294 (1997)

    Article  CAS  Google Scholar 

  27. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16 (1949)

    Google Scholar 

  28. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20 (1953)

    Google Scholar 

  29. Nosewicz, S., Rojek, J., Pietrzak, K., Chmielewski, M.: Viscoelastic discrete element model of powder sintering. Powder Technol. 246, 157–168 (2013)

    Article  CAS  Google Scholar 

  30. Ormel, T., Magnanimo, V., Luding, S.: Modeling of asphalt and experiments with a discrete particles method. In: Conference Proceedings MAIREPAV7 2012 (2012)

    Google Scholar 

  31. Pasha, M., Dogbe, S., Hare, S., Hassanpour, A., Ghadiri, M.: A linear model of elasto-plastic and adhesive contact deformation. Granul. Matter 16(1), 151–162 (2014)

    Article  Google Scholar 

  32. Peri, M.D.M., Cetinkaya, C.: Adhesion characterization based on rolling resistance of individual microspheres on substrates: review of recent experimental progress. J. Adhes. Sci. Technol. 22(5–6), 507–528 (2008)

    Article  CAS  Google Scholar 

  33. Pokluda, O., Bellehumeur, C.T., Vlachopoulos, J.: Modification of Frenkel’s model for sintering. AICHE J. 43(12), 3253–3256 (1997)

    Article  CAS  Google Scholar 

  34. Rojek, J., Labra, C., Su, O., Onate, E.: Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters. Int. J. Solids Struct. 49(13), 1497–1517 (2012)

    Article  Google Scholar 

  35. Rojek, J., Nosewicz, S., Jurczak, K., Chmielewski, M., Bochenek, K., Pietrzak, K.: Discrete element simulation of powder compaction in cold uniaxial pressing with low pressure. Comput. Part. Mech. 3(4), 513–524 (2016)

    Article  Google Scholar 

  36. Roy, S., Luding, S., Weinhart, T.: Macroscopic bulk cohesion and torque for wet granular materials. In Conference for Conveying and Handling of Particulate Solids (2015)

    Google Scholar 

  37. Saito, S., Miyazaki, H.T., Sato, T., Takahashi, K.: Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope. J. Appl. Phys. 92(9), 5140–5149 (2002)

    Article  CAS  Google Scholar 

  38. Schilde, C., Burmeister, C.F., Kwade, A.: Measurement and simulation of micromechanical properties of nanostructured aggregates via nanoindentation and dem-simulation. Powder Technol. 259, 1–13 (2014)

    Article  CAS  Google Scholar 

  39. Singh, A., Magnanimo, V., Luding, S.: Mesoscale contact models for sticky particles. Powder Technol. (submitted)

    Google Scholar 

  40. Skorupski, K., Hellmers, J., Feng, W., Mroczka, J., Wriedt, T., Mädler, L.: Influence of sintering necks on the spectral behaviour of ITO clusters using the discrete dipole approximation. J. Quant. Spectrosc. Radiat. Transf. 159, 11–18 (2015)

    Article  CAS  Google Scholar 

  41. Steuben, J.C., Iliopoulos, A.P., Michopoulos, K.G.: Discrete element modeling of particle-based additive manufacturing processes. Comput. Methods 305, 537–561 (2016)

    Google Scholar 

  42. Strege, S., Weuster, A., Zetzener, H., Kwade, A.: Approach to structural anisotropy in compacted cohesive powder. Granul. Matter 16(3), 401–409 (2014)

    Article  Google Scholar 

  43. Tabor, D.: Indentation hardness: Fifty years on—a personal view. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 74(5), 1207–1212 (1996)

    Article  CAS  Google Scholar 

  44. Thakur, S.C., Morrissey, J.P., Sun, J., Chen, J.F., Ooi, J.Y.: Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granul. Matter 16(3), 383–400 (2014)

    Article  CAS  Google Scholar 

  45. Thakur, S.C., Ooi, J.Y., Ahmadian, H.: Scaling of discrete element model parameters for cohesionless and cohesive solids. Powder Technol. 293, 130 (2016)

    Article  CAS  Google Scholar 

  46. Thornton, A.R., Krijgsman, D.R., Fransen, R.H.A., Gonzalez Briones, S., Tunuguntla, D.R., te Voortwis, A., Luding, S., Bokhove, O., Weinhart, T.: Mercury-DPM: fast particle simulations in complex geometries. EnginSoft Newsl. Simul. Based Eng. Sci. 10(1), 48–53 (2013)

    Google Scholar 

  47. Thornton, C., Cummins, S.J., Cleary, P.W.: An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technol. 233, 30–46 (2013)

    Article  CAS  Google Scholar 

  48. Tykhoniuk, R., Tomas, J., Luding, S., Kappl, M., Heim, L., Butt, H.-J.: Ultrafine cohesive powders: from interparticle contacts to continuum behaviour. Chem. Eng. Sci. 62(11), 2843–2864 (2007)

    Article  CAS  Google Scholar 

  49. van Zwol, P.J., Palasantzas, G., van de Schootbrugge, M., de Hosson, J.T.M., Craig, V.S.J.: Roughness of microspheres for force measurements. Langmuir 24(14), 7528–7531 (2008)

    Article  Google Scholar 

  50. Vastola, G., Zhang, G., Pei, Q.X., Zhang, Y.W.: Microstructure evolution during additive manufacturing. JOM 68, 5 (2016)

    Google Scholar 

  51. Wahl, M., Brckel, U., Brendel, L., Feise, H.J., Weigl, B., Rck, M., Schwedes, J.: Understanding powder caking: predicting caking strength from individual particle contacts. Powder Technol. 188(2), 147–152 (2008)

    Article  CAS  Google Scholar 

  52. Walton, O.R., Braun, R.L.: Viscosity, granular temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30(949) (1986)

    Article  Google Scholar 

  53. Weinhart, T., et al.: MercuryDPM: fast, flexible particle simulations in complex geometries Part II: Applications. In: 5th International Conference on Particle-Based Methods—Fundamentals and Applications, PARTICLES 2017, pp. 123–134. International Center for Numerical Methods in Engineering (2017)

    Google Scholar 

  54. Weinhart, T., Tunuguntla, D.R., van Schrojenstein-Lantman, M.P., van Der Horn, A.J., Denissen, I.F.C., Windows-Yule, C.R., de Jong, A.C., Thornton, A.R.: MercuryDPM: a fast and flexible particle solver Part A: Technical advances. In: Springer Proceedings in Physics, vol. 188 (2017)

    Google Scholar 

  55. Zhang, L., DAcunzi, M., Kappl, M., Auernhammer, G.K., Vollmer, D., van Kats, C.M., van Blaaderen, A.: Hollow silica spheres: synthesis and mechanical properties. Langmuir, 25(5), 2711–2717 (2009)

    Article  CAS  Google Scholar 

  56. Zohdi, T.I.: Additive particle deposition and selective laser processing—a computational manufacturing framework. Comput. Mech. 54(1), 171–191 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out within the framework of the Key Research Program (SPP 1486 PiKo “Particles in Contact”) grants LU 450/10, STA 1021/1 and KA 1724/1. The authors would like to thank the German Research Foundation (DFG) for their financial support during the SPP. The numerical simulations in this paper were carried out using the open-source code MercuryDPM [46, 53, 54], available via http://mercurydpm.org. This SPP and our research would not have been possible without Professor Tomas, who initiated the SPP, but sadly died and thus could not accompany us to the successful ending of the projects; we miss him and his inspirations about particles in contact very much. Special thanks also to Professor Antonyuk who led the SPP successfully to the end, as reflected by this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Weinhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weinhart, T., Fuchs, R., Staedler, T., Kappl, M., Luding, S. (2019). Sintering—Pressure- and Temperature-Dependent Contact Models. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_10

Download citation

Publish with us

Policies and ethics