Skip to main content
Log in

Simulation of the packing of granular mixtures of non-convex particles and voids characterization

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The simulation of granular materials has considerably developed in the last decades essentially with simple geometry particles. The purpose of this paper is to study granular systems of non-convex particles which are present in many industrial processes. Two shapes of large and two shapes of small non-convex particles resulting from the cutting of a hollow cylinder are modelled, and binary mixtures containing varying proportions of small and large particles are generated with a Monte Carlo simulation. Two different states of the granular systems are studied: suspensions and packings obtained after sedimentation. No contact force model is used and only steric repulsion is taken into account. The density, the pore size distribution and the tortuosity of the granular systems are studied. The results are compared to those obtained with granular systems of convex particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herrmann, H.J.: Computer simulations of granular media. In: Bideau, D., Hansen, A. (eds) Disorder and Granular Media, Elsevier, Amsterdam (1993)

    Google Scholar 

  2. Barker, G.C.: Computer simulations of granular materials. In: Mehta, A. (eds) Granular Matter, an Interdisciplinary Approach, Springer, New York (1993)

    Google Scholar 

  3. Pöschel, T., Schwager, T.: Computational Granular Dynamics, Models and Algorithms. Springer, Berlin (2005)

    Google Scholar 

  4. Zou, R.P., Yu, A.B.: Evaluation of the packing characteristics of mono-sized non-spherical particles. Powder Technol. 88, 71–79 (1996)

    Article  Google Scholar 

  5. Coelho, D., Thovert, J.F., Adler, P.M.: Geometrical and transport properties of random packings of spheres and aspherical particles. Phys. Rev. E 55(2), 1959–1978 (1997)

    Article  ADS  Google Scholar 

  6. Marache, A., Riss, J., Cholet, C., Gautier, P.E.: Ballast forming crushed rock: size, shape and shear behavior. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains, A.A. Balkema Publishers, London (2005)

    Google Scholar 

  7. Bowman, E.T., Soga, K.: The influence of particle shape on the stress-strain and creep response of a fine silica sand. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains, A.A. Balkema Publishers, London (2005)

    Google Scholar 

  8. Pournin, L., Liebling, T.M.: A generalization of distinct element method to tridimensional particles with complex shapes. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains, A.A. Balkema Publishers, London (2005)

    Google Scholar 

  9. Muth, B., Eberhard, P., Luding, S.: Collisions between particles of complex shape. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains, A.A. Balkema Publishers, London (2005)

    Google Scholar 

  10. Nolan, G.T., Kavanagh, P.E.: Random packing of nonspherical particles. Powder Technol. 84, 199–205 (1995)

    Article  Google Scholar 

  11. Smith, L.N., Midha, P.S.: Computer simulation of morphology and packing behaviour of irregular particles, for predicting apparent powder densities. Comput. Mater. Sci. 7, 377–383 (1997)

    Article  Google Scholar 

  12. Jia, X., Williams, R.A.: A packing algorithm for particles of arbitrary shapes. Powder Technol. 120, 175–186 (2001)

    Article  Google Scholar 

  13. Clarke, A.S., Wiley, J.D.: Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals. Phys. Rev. B 35(14), 7350–7356 (1987)

    Article  ADS  Google Scholar 

  14. He, D., Ekere, N.N., Cai, L.: Computer simulation of random packing of unequal particles. Phys. Rev. E 60(6), 7098–7104 (1999)

    Article  ADS  Google Scholar 

  15. Yang, A., Miller, C.T., Turcoliver, L.D.: Simulation of correlated and uncorrelated packing of random size spheres. Phys. Rev. E 53(2), 1516–1524 (1996)

    Article  ADS  Google Scholar 

  16. Furnas, C.C.: Grading aggregates, I—Mathematical relations for beds or broken solids of maximum density. Ind. Eng. Chem. 23(9), 1052–1058 (1931)

    Article  Google Scholar 

  17. Ben Aïm, R., Le Goff, P.: Effet de paroi dans les empilements désordonnés de sphères et application à la porosité de mélanges binaires. Powder Technol. 1(5), 282–290 (1968)

    Google Scholar 

  18. Yerazunis, S., Cornell, S.W., Winter, B.: Dense random packing of binary mixtures of spheres. Nature 4999, 835–837 (1965)

    Article  ADS  Google Scholar 

  19. Rémond, S., Gallias, J.L.: Gallias, modelling of granular mixtures placing. Comparison between a 3D full-digital model and a 3D semi-digital model. Powder Technol. 145, 51–61 (2004)

    Article  Google Scholar 

  20. Stovall, T., De Larrard, F., Buil, M.: Linear packing density model of grain mixtures. Powder Technol. 48(1), 1–12 (1986)

    Article  Google Scholar 

  21. De Larrard, F.: Concrete Mixture Proportioning: A Scientific Approach. E & FN Spon, London (1999)

    Google Scholar 

  22. Finney, J.: Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. Ser. A319(1539), 479–493 (1970)

    ADS  Google Scholar 

  23. Scott, G.D., Kilgour, D.M.: The density of random close packing of spheres. Br. J. Appl. J. Phys. D 2, 863 (1969)

    Article  ADS  Google Scholar 

  24. Berryman, J.G.: Random close packing of hard spheres and disks. Phys. Rev. A 27, 1053–1061 (1983)

    Article  ADS  Google Scholar 

  25. Aste, T.: Circle, sphere and drop packings. Phys. Rev. E 53(3), 2571–2579 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  26. Aste, T., Weaire, D.: The pursuit of perfect packing. Institute of Physics Publishing, London (2000)

    MATH  Google Scholar 

  27. Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58(10), 038–1040 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kudrolli, A.: Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209–247 (2004)

    Article  ADS  Google Scholar 

  29. Luchnikov, V.A., Medvedev, N.N., Oger, L., Troadec, J.P.: Voronoi—Delaunay analysis of voids in systems of non spherical particles. Phys. Rev. E 59, 7205–7212 (1999)

    Article  ADS  Google Scholar 

  30. Kim, D.S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Comput. Aided Des. 37(13), 1412–1424 (2005)

    Article  Google Scholar 

  31. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  32. Dullien, F.A.L.: Porous Media, Fluid Transport and Pore Structure. Academic, New York (1979)

    Google Scholar 

  33. Shen, L., Chen, Z: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62, 3748–3755 (2007)

    Article  Google Scholar 

  34. Maxwell J.C. Treatise on Electricity and Magnetism, 2nd edn. Clarendon, Oxford

  35. Akanni, K.A., Evans, J.W., Abramson, I.S.: Effective transport coefficients in heterogeneous media. Chem. Eng. Sci. 42, 1945–1954 (1987)

    Article  Google Scholar 

  36. Neale, G.H., Nader, W.K.: Prediction of transport processes in porous media. Am. Inst. Chem. Eng. J. 19, 112–119 (1973)

    Google Scholar 

  37. Ho, F.G., Strieder, W.: A variational calculation of the effective surface diffusion coefficient and tortuosity. Chem. Eng. Sci. 36, 253–258 (1981)

    Article  Google Scholar 

  38. van Brakel, J., Heertjes, P.M.: Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int. J. Mass Transf. 17, 1093–1103 (1974)

    Article  Google Scholar 

  39. Weissberg, H.: Effective diffusion coefficients in porous media. J. Appl. Phys. 34, 2636–2639 (1963)

    Article  ADS  Google Scholar 

  40. Tomadakis, M.M., Sotirchos, S.V.: Transport properties of random arrays of freely overlapping cylinders with various orientation distributions. J. Chem. Phys. 98, 616–626 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rémond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rémond, S., Gallias, J.L. & Mizrahi, A. Simulation of the packing of granular mixtures of non-convex particles and voids characterization. Granular Matter 10, 157–170 (2008). https://doi.org/10.1007/s10035-007-0082-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0082-y

Keywords

Navigation