Skip to main content
Log in

Experimental identification of entropy model of comminution process

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The entropy model based on population balance enables theoretical prediction of particle size distribution of comminution product. Selection and breakage functions occur in this model. The form of the selection function was determined experimentally. Informational entropy was used for the breakage function determination. Parameters of both functions can be estimated from experiments. The parameter identification of the entropy model was carried out on the basis of research on limestone comminution. Grinding tests were carried out in a laboratory fluidised bed jet mill. The results of the experimental identification confirm the accuracy of the entropy model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

parameter of selection function

b ij :

breakage function

c K :

constant factor of Kick’s hypothesis (J/kg)

c R :

constant factor of Rittinger’s hypothesis (J m/kg)

e ij :

density of used energy (J/kg)

f p i :

particle size distribution of product

f s j :

particle size distribution of feed

Fp (x ):

cumulative particle size distribution of product

Fs (x ):

cumulative particle size distribution of feed

i :

size class number of product

j :

size class number of feed

m :

number of size classes

p ij :

transition function

S j :

selection function

x :

particle size (μm)

x i :

arithmetic mean of size limits of i th class of product (μm)

y j :

arithmetic mean of size limits of j thclass of feed (μm)

α:

parameter of power form of selection function

λ:

Lagrange multiplier (kg/J)

References

  1. Austin L.G. (2004). A preliminary simulation model for fine grinding in high speed hammer mills. Powder Technol. 143–144: 240–252

    Google Scholar 

  2. Bass L. (1954). Zur Theorie der Mahlvorgänge. Z. Angew. Math. Physik 5: 283–292

    Article  MATH  Google Scholar 

  3. Berthiaux H., Marikh K., Mizonov V., Ponomarev D. and E. Barantzeva(2004). Modeling continuous powder mixing by means of the theory of Markov chains. Part Sci. Technol. 22: 379–389

    Article  Google Scholar 

  4. Berthiaux H., Mizonov V. and Zhukov V. (2005). Application of the theory of Markov chains to model different processes in particle technology. Powder Technol. 157: 128–137

    Article  Google Scholar 

  5. Berthiaux H. and Mizonov V. (2004). Applications of Markov chains in particulate process engineering: a review. Can. J. Chem. Eng. 82: 1143–1168

    Article  Google Scholar 

  6. Bertrand D., Guibert D., Melcion J.-P. and Duc G. (1999). Evaluation of the transition matrix for comminuting pea seeds in an impact mill using a linear neural network. Powder Technol. 105: 119–124

    Article  Google Scholar 

  7. Bilgili E. and Scarlett B. (2005). Population balance modeling of non-linear effect in milling processes. Powder Technol. 153: 59–71

    Article  Google Scholar 

  8. Bilgili E., Yepes J. and Scarlett B. (2006). Formulation of a non-linear framework for population balance modeling of batch grinding: Beyond first-order kinetics. Chem. Eng. Sci. 61: 33–44

    Article  Google Scholar 

  9. Brandt, S.: Data analysis (in Polish). WN PWN, Warsaw (2002)

  10. Broadbent S.R. and Callcott T.G. (1956). A matrix analysis of processes involving particle assemblies. Philos. Trans. R. Soc. Lond. A 249: 99–123

    ADS  Google Scholar 

  11. Broadbent S.R. and Callcott T.G. (1956). I. A new analysis of coal breakage processes. II. A matrix representation of breakage. J. Inst. Fuel 65: 524–539

    Google Scholar 

  12. Chapelle P., Abou-Chakra H., Christakis N., Patel M., Abu-Nahar A., Tüzün U. and Cross M. (2004). Computational model for prediction of particle degradation during dilute-phase pneumatic conveying: The use of a laboratory-scale degradation tester for the determination of degradation propensity. Adv. Powder Technol. 15: 13–29

    Article  Google Scholar 

  13. Cho H. and Austin L.G. (2003). An equation for the breakage of particles under impact. Powder Technol. 132: 161–166

    Article  Google Scholar 

  14. Clerc L., Ouammou M. and Benhassaine A. (1996). Dimensioning a forced movement wet grinder with a Mac Cabe and Thiele construction. Int. J. Miner. Process. 44(45): 663–672

    Article  Google Scholar 

  15. Diemer, R.B., Olson, J.H.: A moment methodology for coagulation and breakage problems: Part 1–3 – generalized daughter distribution functions. Chem. Eng. Sci. 57, 2193–2209, 2211–2228, 4187–4198 (2002)

    Google Scholar 

  16. Diemer R.B. and Olson J.H. (2006). Bivariate moment methods for simultaneous coagulation, coalescence and breakup. J. Aerosol Sci. 37: 363–385

    Article  Google Scholar 

  17. Eskin D. and Voropayev S. (2001). Engineering estimations of opposed jet milling efficiency. Miner. Eng. 14: 1161–1175

    Article  Google Scholar 

  18. Gardner, R.P., Austin, L.G.: A chemical engineering treatment of batch grinding. In: 1st Proc. European Symposium on Size Reduction, Verlag Chemie, Düsseldorf, pp 217–248 (1962)

  19. Hukki R.T. (1961). Proposal for a solomonic settlement between the theories of von Rittinger, Kick and Bond. Trans. AIME 220: 403–408

    Google Scholar 

  20. Kostoglou M. and Karabelas A.J. (2002). An assessment of flow-order methods for solving the breakage equation. Powder Technol. 127: 116–127

    Article  Google Scholar 

  21. Kostoglou M. and Karabelas A.J. (2005). On the self-similar solution of fragmentation equation: Numerical evaluation with implications for the inverse problem. J. Colloid Interface Sci. 284: 571–581

    Article  Google Scholar 

  22. Kostoglou M. and Karabelas A.J. (2005). Toward a unified framework for the derivation of breakage functions based on the statistical theory of turbulence. Chem. Eng. Sci. 60: 6584–6595

    Article  Google Scholar 

  23. Marikh K., Berthiaux H., Mizonov V., Barantseva E. and Ponomarev D. (2006). Flow analysis and Markov chain modelling to quantify the agitation effect in a continuous powder mixer. Chem. Eng. Res. Des. 84: 1059–1074

    Article  Google Scholar 

  24. Mizonov V., Zhukov V., Korovkin A. and Berthiaux H. (2005). On possible instability of throughputs in complex milling circuits. Chem. Eng. Process. 44: 267–272

    Article  Google Scholar 

  25. Mizonov V.E., Berthiaux H., Zhukov V.P. and Bernotat S. (2004). Application of multi-dimensional Markov chains to model kinetics of grinding with internal classification. Int. J. Miner. Process. 74: S307–S315

    Article  Google Scholar 

  26. Mizonov V.E., Zhukov V.P. and Bernotat S. (1997). Simulation of grinding: new approaches. ISPEU Press, Ivanovo

    Google Scholar 

  27. Morrell S. (2004). An alternative energy–size relationship to that proposed by Bond for the design and optimisation of grinding circuits. Int. J. Miner. Process 74: 133–141

    Article  Google Scholar 

  28. Nowak, R.: Statistics for physicists (in Polish). WN PWN, Warsaw (2002)

  29. Otwinowski H. (2006). Energy and population balances in comminution process modeling based on the informational entropy. Powder Technol. 167: 33–44

    Article  Google Scholar 

  30. Otwinowski, H.: Informational entropy in the modelling of comminution process (in Polish). University of Mining and Metallurgy Press, Cracow, 124 (2003)

  31. Otwinowski H. (2006). Maximum entropy method in comminution modeling. Granular Matt. 8: 239–249

    Article  Google Scholar 

  32. Ramkrishna D. (2000). Population balances—theory and applications to particulate systems in engineering. Academic, San Diego

    Google Scholar 

  33. Rumpf H. (1973). Physical aspects of comminution and new formulation of a law of comminution. Powder Technol. 7: 145–159

    Article  Google Scholar 

  34. Sedlatschek K. and Bass L. (1953). Contribution to the theory of milling processes. Powder Metal Bull. 6: 148–153

    Google Scholar 

  35. Soos M., Sefcik J. and Morbidelli M. (2006). Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering. Chem. Eng. Sci. 61: 2349–2363

    Article  Google Scholar 

  36. Stamboliadis E.Th. (2002). A contribution to the relationship of energy and particle size in the comminution of brittle particulate materials. Miner. Eng. 15: 707–713

    Article  Google Scholar 

  37. Zhukov V.P., Mizonov V.E., Filitchev P.V. and Bernotat S. (1998). Application of the principle of entropy maximum to predicting the performance of comminution processes. Theor. Found Chem. Eng. 32: 159–162

    Google Scholar 

  38. Zhukov V.P., Mizonov V.E., Filitchev P.V. and Bernotat S. (1998). The modelling of grinding processes by means of the principle of maximum entropy. Powder Technol. 95: 248–253

    Article  Google Scholar 

  39. Zhukov, V.P., Mizonov, V.E., Otwinowski, H.: Entropy approach of comminution kinetics (in Russian). International Conference “Theoretical and experimental basis of new devices design”. Ivanovo-Ples (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Otwinowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otwinowski, H., Zbroński, D. & Urbaniak, D. Experimental identification of entropy model of comminution process. Granular Matter 9, 377–386 (2007). https://doi.org/10.1007/s10035-007-0049-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0049-z

Keywords

Navigation