Skip to main content
Log in

Effect of cyclic shearing on shear localisation in granular bodies

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract.

Cyclic shearing of an infinite narrow layer of dry and cohesionless sand between two very rough boundaries under constant vertical pressure is numerically modelled with the finite element method using a polar hypoplastic constitutive relation. The constitutive relation was obtained through an extension of a non-polar model by polar quantities, viz. particle rotations, curvatures, couple stresses using the mean grain diameter as a characteristic length. The proposed model captures the essential mechanical features of granular bodies in a wide range of densities and pressures with a single set of constants. The material constants can be easily determined from granulometric properties and laboratory tests. The attention of numerical simulations is laid on the influence of number of cycles on the thickness of an induced shear zone for both an initially dense and loose granular specimen. In addition, the effect of a stochastic distribution of the initial void ratio on shear localisation is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Vardoulakis, Shear band inclination and shear modulus in biaxial tests, Int. J. Num. Anal. Meth. Geomech. 4 (1980), p. 103–119

    Google Scholar 

  2. T. Yoshida, F. Tatsuoka & M. Siddiquee, Shear banding in sands observed in plane strain compression, In: Localisation and Bifurcation Theory for Soils and Rocks, R. Chambon, J. Desrues & I. Vardoulakis (Eds.), Balkema, Rotterdam, (1994), p. 165–181

  3. F. Tatsuoka, M. S. Siddiquee, T. Yoshida, C. S. Park, Y. Kamegai, S. Goto, S. & Y. Kohata, Testing methods and results of element tests and testing conditions of plane strain model bearing capacity tests using air-dried dense Silver Buzzard Sand, (Internal Report, University of Tokyo, (1994), p. 1–129

  4. F. Tatsuoka, M. Okahara, T. Tanaka, K. Tani, T. Morimoto & M. S. Siddiquee, Progressive failure and particle size effect in bearing capacity of footing on sand, Proc. of the ASCE Geotechnical Engineering Congress 27(2) (1991), 788–802

    Google Scholar 

  5. F. Tatsuoka, S. Goto, T. Tanaka, K. Tani & Y. Kimura, Particle size effects on bearing capacity of footing on granular material, In: Deformation and Progressive Failure in Geomechanics, A. Asaoka, T. Adachi, & F. Oka (Eds.) Pergamon, (1997), p. 133–139

  6. T. Pradhan, Characteristics of shear band in plane strain compression test of sands, In: Deformation and Progressive Failure in Geomechanics, A. Asaoka, T. Adachi & F. Oka (Eds.), Pergamon, (1997), p. 241–246

  7. J. Desrues & W. Hammad, Shear banding dependency on mean pressure level in sand, Int. Workshop on Numerical Methods for Localization and Bifurcation of Granular Bodies, Gdansk, Poland, (1989)

  8. J. Desrues, R. Chambon, M. Mokni & F. Mazerolle, Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography, Géotechnique 46(3) (1996), p. 529–546

  9. K. Yagi, S. Miura, T. Asonuma, T. Sakon & T. Nakata, Particle crushing and shear banding of volcanic coarse-grained soils, In: Deformation and Progressive Failure in Geomechanics, A. Asaoka, T. Adachi & F. Oka (Eds.), Pergamon, (1997), p. 139–145

  10. J. Tejchman, Modelling of shear localisation and autogeneous dynamic effects in granular bodies, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe 140 (1997), p. 1–353

  11. J. Tejchman, I. Herle & J. Wehr, FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localisation, Int. J. Num. Anal. Meth. Geomech. 23(15) (1999), p. 2045–2074

    Google Scholar 

  12. Tejchman, J. Behaviour of granular bodies in induced shear zones. Granular Matter, Springer-Verlag 2/2 (2000), p. 77–96

  13. Tejchman, J. & Gudehus, G. Shearing of a narrow granular strip with polar quantities. J. Num. and Anal. Methods in Geomechanics 25 (2001), p. 1–28

    Google Scholar 

  14. Tejchman, J. Patterns of shear zones in granular materials within a polar hypoplastic continuum. Acta Mechanica 155(1-2) (2002), p. 71–95

    Google Scholar 

  15. E. Bauer & W. Huang, Numerical study of polar effects in shear zones, In: Numerical Models in Geomechanics, G. N. Pande, S. Pietruszczak & H. F. Schweiger (Eds.), Balkema, (1999), p. 133–141

  16. K. Nübel & G. Gudehus, Evolution of localized shearing; dilation and polarization in grain skeletons, In: Powders and Grains, Koshino (Ed.), Swets and Zeitlinger, Lisse, (2002), p. 289–292

  17. K. Nübel, Experimental and numerical investigation of shear localisation in plane strain, Lecture at International Workshop on Bifurcations and Instabilities in Geomechanics, IWBI 2002, University of Minnesota, USA, 2002

  18. M. Uesugi, H. Kishida & Y. Tsubakihara, Behaviour of sand particles in sand-steel friction, Soils and Foundations 28(1) (1988), p. 107–118

    Google Scholar 

  19. M. Oda, J. Konishi & S. Nemat-Nasser, Experimental micromechanical evaluation of strength of granular materials, effects of particle rolling, Mechanics of Materials, North-Holland Publishing Comp. 1 (1982), p. 269–283

  20. J. Tejchman, Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe 117 (1989), p. 1–236

  21. F. Löffelmann, Theoretische und experimentelle Untersuchungen zur Schüttgut-Wand-Wechselwirkung und zum Mischen und Entmischen von Granulaten, Dissertation, Karlsruhe University, (1989)

  22. M. Oda, Micro-fabric and couple stress in shear bands of granular materials, In: Powders and Grains, C. Thornton (Ed.), Rotterdam, Balkema, (1993), p. 161–167

  23. M. Oda, F. Tatsuoka & T. Yoshida, Void ratio in shear band of dense granular soils, In: Deformation and Progressive Failure in Geomechanics, A. Asaoka, T. Adachi & F. Oka, (Eds.), Pergamon, (1997), p. 157–162

  24. H. Sakaguchi, A. Murakami & T. Hasegawa, Vortex pattern and its diameter in relation to the thickness of shear bands in granular materials. In: Deformation and Progressive Failure in Geomechanics, A. Asaoka, T. Adachi & F. Oka, (Eds.), Pergamon, (1997), p. 93–96

  25. S. Luding, From microscopic simulation to macroscopic material behaviour, Comp. Phys. Com. 147 (2002),~p. 134–140

    Google Scholar 

  26. H. B. Mühlhaus, Application of Cosserat theory in numerical solutions of limit load problems, Ing. Arch. 59 (1989), p. 124–137

  27. W. Ehlers, P. Ellsiepen & M. Ammann, Time- and space-adaptive computations of localization phenomena in standard and micropolar frictional porous materials, In: Bifurcation Localisation Theory in Geomechanics, H.-B. Mühlhaus, A. Dyskin & E. Pasternak (Eds.), Balkema, (2001), 139–147

  28. T. Marcher & P.A. Vermeer, P, Macro-modelling of softening in non-cohesive soils, In: Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, P. A. Vermeer et al. (Eds.), Springer-Verlag, (2001), p. 89–110

  29. H. Alehossein & A. Korinets, Gradient dependent plasticity and the finite difference method, In: Bifurcation Localisation Theory in Geomechanics, H.-B. Mühlhaus, A. Dyskin & E. Pasternak (Eds.), Balkema, (2001), p. 117–125

  30. T. Maier, Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizität. PhD Thesis, University of Dortmund, (2002)

  31. J. Tejchman, FE-analysis of shear localizations within a polar and non-local hypoplasticity, Proc. 16th Engineering Mechanics Conference ASCE, Seattle, USA, (2003)

  32. D. M. Wood & M. Budhu, The behaviour of Leighton Buzzard sand in cyclic simple shear tests. In: Int. Symp. on Soils and Cyclic and Transient Loading, Swansea, (1980), p. 9–21

  33. T. L. Youd, Maximum density of sand by repeated straining in simple shear, Highway Research Record 374 (1971), p. 1–6

    Google Scholar 

  34. T. B. S. Pradhan & F. Tatsuoka, Experimental stress-dilatancy relations of sand subject to cyclic loading, Soils and Foundations 29 (1989), p. 45–64

    Google Scholar 

  35. V. A. Osinov, The role of dilatancy in the plastodynamics of granular solids, In: Powders and Grains, Kishino (Ed.), Swets and Zeitlinger, Lisse, (2001), p. 135–138

  36. G. Gudehus, I. Loukachev, & N. Pralle, Inelastic behaviour of grain skeletons with propagation of plane shear waves, In: Powders and Grains, Kishino, (Ed.), Swets and Zeitlinger, Lisse, (2001), p. 125–128

  37. E. Bauer, Calibration of a comprehensive hypoplastic model for granular materials, Soils and Foundations 36(1) (1996), p. 13–26

  38. K. H. Roscoe, An apparatus for the application of simple shear to soil samples. Proc. 3rd Intern. Conf. Soil Mechanics and Foundation Eng., Zurich 58 (1953), p. 1009–1012

  39. L. Bjeruum, & A. Landva, Direct simple shear tests on a Norwegian quick clay, Geotechnique 16 (1966), p. 1–20

  40. M. Budhu, Nonuniformities imposed simple shear apparatus, Can. Geotech. J. 20 (1984), p. 125–137

  41. W. Huang & E. Bauer, Numerical investigations of shear localisations in micro-polar hypoplastic material, J. Num. and Anal. Methods in Geomechanics 27 (2003), p. 325– 352

    Google Scholar 

  42. J. Tejchman, FE-simulations of a direct and a true simple shear test, Powder Handling and Processing 14(2) (2002), p. 86–91

  43. V. K. Garga & J. A. Infante Sedano, Steady State Strength of Sands in a Constant Volume Ring Shear Apparatus, Geotechnical Testing J 25 (2002), p. 414–421

  44. R. de Borst, H. B. Mühlhaus, J. Pamin & L. Y. Sluys, Computational modelling of localization of deformation, In: Proc. of the 3rd Int. Conf. Comp. Plasticity, D. R. J. Owen, E. Onate & E. Hinton (Eds.), Pineridge Press, Swansea, (1992), p. 483–508

  45. J. Tejchman, Effect of cyclic shearing on the evolution of localisation of deformations in granular bodies, Electronic Proc. Int. Conf. Computer Methods in Mechanics, CMM 2003, 3-6.06. 2003, Gliwice, Poland, (2003)

  46. G. Gudehus, A comprehensive constitutive equation for granular materials, Soils and Foundations 36(1) (1996), p. 1–12

    Google Scholar 

  47. H. Schäfer, Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums, Miszellaneen der Angewandten Mechanik, Festschrift Tolmien, W., Berlin, Akademie-Verlag, (1962)

  48. I. Herle & G. Gudehus, Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies, Mechanics of Cohesive-Frictional Materials 4(5) (1999), p. 461–486

    Google Scholar 

  49. E. Bauer, Conditions of embedding Casagrande’s critical states into hypoplasticity, Mechanics of Cohesive-Frictional Materials 5 (2000), p. 125–148

  50. J. Tejchman, Numerical simulation of filling in silos with a polar hypoplastic constitutive law. Powder Technology 96 (1998), p. 227–239

    Google Scholar 

  51. J. Tejchman, Effects of wall inclinations and wall imperfections on pressures during silo flow in silos. Kona, Powder and Particle 20 (2002), p. 125–133

    Google Scholar 

  52. S. A. Zaimi, Modelisation de l’coulement des charges dans le haut fourneau. PhD Thesis, Ecole Centrale Paris, France, (1998)

  53. J. Wehr & J. Tejchman, Sand anchors in rock and granular soils - experiments and a polar hypoplastic approach. In: Proc. World Civil and Environmental Engineering Conference, A.S. Balasubramaniam et al. (Ed.), Thailand, (1999)

  54. J. Tejchman, Silo-quake - measurements, a numerical polar approach and a way for its suppression, Thin-Walled Structures 31(1-3) (1998), p. 137–158

Download references

Author information

Authors and Affiliations

Authors

Additional information

KeywordsGranular material, Cyclic shearing, Polar hypoplasticity, Finite element method, Shear localisation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejchman, J., Bauer, E. Effect of cyclic shearing on shear localisation in granular bodies. GM 5, 201–212 (2004). https://doi.org/10.1007/s10035-003-0135-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-003-0135-9

Keywords

Navigation