Skip to main content
Log in

Macro- and micro-mechanical investigations on liquefaction behaviour of granular material under bi-directional simple shear

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive study of initial- and re-liquefaction behaviour of granular material under bi-directional simple shear by conducting experiments and numerical simulations based on the discrete element method (DEM). In the initial liquefaction stage, various linear and non-linear cyclic loading paths are considered, including cases with and without static shear consolidation (SSC). In the re-liquefaction stage, the linear cyclic loading path along one direction is adopted. It is shown that DEM results are in good agreement with experimental data. The presence of SSC increases liquefaction resistance of granular material, and the reason is related to the initial dense state of granular materials. The re-liquefaction stage features a higher liquefaction resistance than the initial liquefaction stage does. Liquefaction resistance of granular material for various bi-directional simple shear cases is demonstrably related to the characteristics of relative density, amount of principal stress rotation (PSR), coordination number, and initial fabric anisotropy of specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Roscoe, K.H.: An apparatus for the application to simple shear to soil samples. In: Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering. pp. 186–191 (1953)

  2. Bjerrum, L., Landva, A.: Direct simple-shear tests on a norwegian quick clay. Géotechnique. 16, 1–20 (1966). https://doi.org/10.1680/geot.1966.16.1.1

    Article  Google Scholar 

  3. Finn, W.D., Pickering, D.J., Bransby, P.L.: Sand liquefaction in triaxial and simple shear tests. J. Soil Mech. Found. Div. 97 (1971)

  4. Oda, M., Konishi, J.: Micro deformation mechanisam of granular material in simple shear. Soils Found. 14, 25–38 (1974)

    Article  Google Scholar 

  5. Dyvik, R., Berre, T., Lacasse, S., Raadim, B.: Comparison of truly undrained and constant volume direct simple shear tests. Géotechnique 37, 3–10 (1987). https://doi.org/10.1680/geot.1987.37.1.3

    Article  Google Scholar 

  6. Thornton, C., Zhang, L.: A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos. Mag. 86, 3425–3452 (2006). https://doi.org/10.1080/14786430500197868

    Article  ADS  Google Scholar 

  7. Yang, Y.M., Yu, H.S.: Numerical simulations of simple shear with non-coaxial soil models. Int. J. Numer. Anal. Methods Geomech. 30, 1–19 (2006). https://doi.org/10.1002/nag.468

    Article  MATH  Google Scholar 

  8. Boulanger, R.W., Chan, C.K., Seed, H.B., Seed, R.B., Sousa, J.B.: A low-compliance bi-directional cyclic simple shear apparatus. Geotech. Test. J. 16(1), 36–45 (1993)

    Article  Google Scholar 

  9. Kammerer, A.M., Pestana, J.M., Seed, R.B.: Undrained response of Monterey 0 /30 sand under multidirectional cyclic simple shear loading conditions. Geotechnical Engineering Research Report No. UCB/GT/02-01, University of California, Berkeley, pp. 1–463 (2002)

  10. Rudolph, C., Grabe, J., Albrecht, I.: Simple shear tests with a varying shearing direction during cyclic shearing. Geotech. Lett. 4, 102–107 (2014). https://doi.org/10.1680/geolett.13.00088

    Article  Google Scholar 

  11. Wei, J., Huang, D., Wang, G.: Fabric evolution of granular soils under multidirectional cyclic loading. Acta Geotech. 15, 2529–2543 (2020). https://doi.org/10.1007/s11440-020-00942-8

    Article  Google Scholar 

  12. Vaid, J.P., Stedman, J.D., Sivathayalan, S.: Confining stress and static shear effects in cyclic liquefaction. Can. Geotech. J. 38, 580–591 (2001). https://doi.org/10.1139/cgj-38-3-580

    Article  Google Scholar 

  13. Rollins, K.M., Seed, H.B.: Influence of buildings on potential liquefaction damage. J. Geotech. Eng. 116, 165–185 (1990). https://doi.org/10.1061/(ASCE)0733-9410(1990)116:2(165)

    Article  Google Scholar 

  14. Boulanger, R.W., Seed, R.B., Chan, C.K., Seed, H.B., Sousa, J.B.: Liquefaction of sand under bi-directional monotonic and cyclic loading. J. Geotech. Eng. 121, 870–878 (1995)

    Article  Google Scholar 

  15. Seed, B., Lee, K.L.: Liquefaction of saturated sands during cyclic loading. J. Soil Mech. Found. Div. 92, 105–134 (1966)

    Article  Google Scholar 

  16. Huang, Y., Yu, M.: Review of soil liquefaction characteristics during major earthquakes of the twenty-first century. Nat. Hazards 65, 2375–2384 (2013). https://doi.org/10.1007/s11069-012-0433-9

    Article  Google Scholar 

  17. Finn, W.D.L., Bransby, P.L., Pickering, D.J.: Effect of strain history on liquefaction of sand. J. Soil Mech. Found. Div. 96, 1917–1934 (1970). https://doi.org/10.1061/jsfeaq.0001478

    Article  Google Scholar 

  18. Yamada, S., Takamori, T., Sato, K.: Effects on reliquefaction resistance produced by changes in anisotropy during liquefaction. Soils Found. 50, 9–25 (2010). https://doi.org/10.3208/sandf.50.9

    Article  Google Scholar 

  19. Wang, R., Fu, P., Zhang, J.M., Dafalias, Y.F.: Fabric characteristics and processes influencing the liquefaction and re-liquefaction of sand. Soil Dyn. Earthq. Eng. (2019). https://doi.org/10.1016/j.soildyn.2019.105720

    Article  Google Scholar 

  20. Wahyudi, S., Koseki, J., Sato, T., Miyashita, Y.: Effects of pre-shearing history on repeated liquefaction behavior of sand using stacked-ring shear apparatus. Bull. ERS. 46 (2013)

  21. Ye, B., Hu, H., Bao, X., Lu, P.: Reliquefaction behavior of sand and its mesoscopic mechanism. Soil Dyn. Earthq. Eng. 114, 12–21 (2018). https://doi.org/10.1016/j.soildyn.2018.06.024

    Article  Google Scholar 

  22. Bokkisa, S. V., Wang, G., Huang, D., Jin, F.: Fabric evolution in post-liquefaction and re-liquefaction of granular soils using 3d discrete element modelling. In: Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions- Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, 2019. pp. 1461–1468 (2019)

  23. Koseki, J., Yokoyama, D., Morimoto, T.: Cyclic bi-axial tests on assembly of metal rods under constant-volume condition to study re-liquefaction behavior. Transp. Infrastruct. Geotechnol. 7, 478–495 (2020). https://doi.org/10.1007/s40515-020-00123-w

    Article  Google Scholar 

  24. Matsuda, H., Hendrawan, A.P., Ishikura, R., Kawahara, S.: Effective stress change and post-earthquake settlement properties of granular materials subjected to multi-directional cyclic simple shear. Soils Found. 51, 873–884 (2011). https://doi.org/10.3208/sandf.51.873

    Article  Google Scholar 

  25. Nhan, T.T., Matsuda, H.: Post-cyclic recompression of clays subjected to undrained cyclic shear. Geotech. Spec. Publ., pp. 109–120 (2017) https://doi.org/10.1061/9780784480489.012

  26. Matsuda, H., Thanh Nhan, T., Ishikura, R.: Prediction of excess pore water pressure and post-cyclic settlement on soft clay induced by uni-directional and multi-directional cyclic shears as a function of strain path parameters. Soil Dyn. Earthq. Eng. 49, 75–88 (2013). https://doi.org/10.1016/j.soildyn.2013.01.010

    Article  Google Scholar 

  27. Cui, L., O’Sullivan, C.: Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Géotechnique 56, 455–468 (2006). https://doi.org/10.1680/geot.2006.56.7.455

    Article  Google Scholar 

  28. Li, X., Yu, H.S., Li, X.S.: Macro–micro relations in granular mechanics. Int. J. Solids Struct. 46, 4331–4341 (2009). https://doi.org/10.1016/j.ijsolstr.2009.08.018

    Article  MATH  Google Scholar 

  29. Wang, G., Wei, J.: Microstructure evolution of granular soils in cyclic mobility and post-liquefaction process. Granul. Mater. (2016). https://doi.org/10.1007/s10035-016-0621-5

    Article  Google Scholar 

  30. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  31. Asadzadeh, M., Soroush, A.: Fundamental investigation of constant stress simple shear test using DEM. Powder Technol. 292, 129–139 (2016). https://doi.org/10.1016/j.powtec.2016.01.029

    Article  Google Scholar 

  32. Li, Y., Yang, Y., Yu, H.S., Roberts, G.: Monotonic direct simple shear tests on sand under multidirectional loading. Int. J. Geomech. 17, 4016038 (2016). https://doi.org/10.1061/(asce)gm.1943-5622.0000673

    Article  Google Scholar 

  33. Wijewickreme, D., Dabeet, A., Byrne, P.: Some observations on the state of stress in the direct simple shear test using 3D discrete element analysis. Geotech. Test. J. 36, 292–299 (2013). https://doi.org/10.1520/Gtj20120066

    Article  Google Scholar 

  34. Dammala, P.K., Kumar, S.S., Krishna, A.M., Bhattacharya, S.: Dynamic soil properties and liquefaction potential of northeast Indian soil for non-linear effective stress analysis. Bull. Earthq. Eng. 17, 2899–2933 (2019). https://doi.org/10.1007/s10518-019-00592-6

    Article  Google Scholar 

  35. Zhang, H., Yang, Y., Yu, H.S.: Liquefaction and post-liquefaction of granular material under multi-directional cyclic loading. Mar. Georesources Geotechnol. (2020). https://doi.org/10.1080/1064119X.2020.1823536

    Article  Google Scholar 

  36. Yasuda, S., Soga, M.: Effects of frequency on undrained strength of sands (in Japanese). In: Proc. 19th Nat. Conf. Soil Mech. Found. Eng, pp. 549–550 (1984)

  37. Tatsuoka, F., Toki, S., Miura, S., Kato, H., Okamoto, M., Yamada, S.I., Yasuda, S., Tanizawa, F.: Some factors afecting cyclic undrained triaxial strength of sand. Soils Found. 26, 99–116 (1986). https://doi.org/10.3208/sandf1972.26.3_99

    Article  Google Scholar 

  38. Wichtmann, T., Triantafyllidis, T.: An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I—tests with monotonic loading and stress cycles. Acta Geotech. 11, 739–761 (2016). https://doi.org/10.1007/s11440-015-0402-z

    Article  Google Scholar 

  39. Kokusho, T., Hara, T., Hiraoka, R.: Undrained shear strength of granular soils with different particle gradations. J. Geotech. Geoenvironmental Eng. 130, 621–629 (2004). https://doi.org/10.1061/(asce)1090-0241(2004)130:6(621)

    Article  Google Scholar 

  40. Sze, H.Y., Yang, J.: Failure modes of sand in undrained cyclic loading: impact of sample preparation. J. Geotech. Geoenvironmental Eng. 140, 152–169 (2014). https://doi.org/10.1061/(asce)gt.1943-5606.0000971

    Article  Google Scholar 

  41. Itasca Consulting Group: PFC (particle flow code in 2 and 3 dimensions), version 5.0 [User’s manual], (2014)

  42. Jiang, M., Li, T., Shen, Z.: Fabric rates of elliptical particle assembly in monotonic and cyclic simple shear tests: a numerical study. Granul. Matter. (2016). https://doi.org/10.1007/s10035-016-0641-1

    Article  Google Scholar 

  43. Xu, D.S., Tang, J.Y., Zou, Y., Rui, R., Liu, H.B.: Macro and micro investigation of gravel content on simple shear behavior of sand-gravel mixture. Constr. Build. Mater. 221, 730–744 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.091

    Article  Google Scholar 

  44. Cheng, K., Wang, Y., Yang, Q., Mo, Y., Guo, Y.: Determination of microscopic parameters of quartz sand through tri-axial test using the discrete element method. Comput. Geotech. 92, 22–40 (2017). https://doi.org/10.1016/j.compgeo.2017.07.017

    Article  Google Scholar 

  45. Zhang, M., Yang, Y., Zhang, H., Yu, H.S.: DEM and experimental study of bi-directional simple shear. Granul. Matter. 21, 24 (2019). https://doi.org/10.1007/s10035-019-0870-1

    Article  Google Scholar 

  46. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012). https://doi.org/10.1016/j.powtec.2011.10.057

    Article  Google Scholar 

  47. Zhang, W., Wang, J., Jiang, M.: DEM-aided discovery of the relationship between energy dissipation and shear band formation considering the effects of particle rolling resistance. J. Geotech. Geoenvironmental Eng. 139, 1512–1527 (2013). https://doi.org/10.1061/(asce)gt.1943-5606.0000890

    Article  Google Scholar 

  48. Zhang, L., Evans, T.M.: Boundary effects in discrete element method modeling of undrained cyclic triaxial and simple shear element tests. Granular Matter (2018). https://doi.org/10.1007/s10035-018-0832-z

    Article  Google Scholar 

  49. O’Sullivan, C.: Particle-based discrete element modeling: geomechanics perspective. Int. J. Geomech. 11, 449–464 (2011). https://doi.org/10.1061/(Asce)Gm.1943-5622.0000024

    Article  Google Scholar 

  50. Satake, M.: Fabric tensor in granular materials. In: IUTAM Conference on Deformation and Failure of Granular Materials. pp. 63–67, Balkema (1982)

  51. Barreto, D., O’Sullivan, C., Zdravkovic, L.: Quantifying the evolution of soil fabric under different stress paths. In: AIP Conference Proceedings. pp. 181–184 (2009)

  52. Wei, J., Wang, G.: Discrete-element method analysis of initial fabric effects on pre- and post-liquefaction behavior of sands. Geotech. Lett. 7, 161–166 (2017). https://doi.org/10.1680/jgele.16.00147

    Article  Google Scholar 

  53. Ishihara, K., Yamazaki, F.: Cyclic simple shear tests on saturated sand in multi-directional loading. Soils Found. 20, 45–59 (1980). https://doi.org/10.3208/sandf1972.20.45

    Article  Google Scholar 

  54. Wang, R., Fu, P.C., Zhang, J.M., Dafalias, Y.: DEM study of fabric features governing undrained post-liquefaction shear deformation of sand. Acta Geotech. 11, 1321–1337 (2016). https://doi.org/10.1007/s11440-016-0499-8

    Article  Google Scholar 

  55. Miyamoto, J., Sassa, S., Sekiguchi, H.: Progressive solidification of a liquefied sand layer during continued wave loading. Géotechnique 54, 617–629 (2004). https://doi.org/10.1680/geot.54.10.617.56343

    Article  Google Scholar 

  56. Ecemis, N., Demirci, H.E., Karaman, M.: Influence of consolidation properties on the cyclic re-liquefaction potential of sands. Bull. Earthq. Eng. 13, 1655–1673 (2015). https://doi.org/10.1007/s10518-014-9677-y

    Article  Google Scholar 

  57. Wood, D.M., Drescher, A., Badhu, M.: On the determination of stress state in the simple shear apparatus. Geotech. Test. J. 2, 211–222 (1979). https://doi.org/10.1520/GTJ10460J

    Article  Google Scholar 

  58. Hu, M., O’Sullivan, C., Jardine, R.R., Jiang, M.: Stress-induced anisotropy in sand under cyclic loading. Granul. Matter. 12, 469–476 (2010). https://doi.org/10.1007/s10035-010-0206-7

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Project code 11872219), Ningbo Bureau of Science and Technolgoy (project code 202002N3116). These supports are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunming Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Yang, Y., Zhang, H. et al. Macro- and micro-mechanical investigations on liquefaction behaviour of granular material under bi-directional simple shear. Granular Matter 23, 93 (2021). https://doi.org/10.1007/s10035-021-01155-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01155-w

Keywords

Navigation