Skip to main content

Advertisement

Log in

A critical review of the in vitro and in vivo models for the evaluation of anti-infective meshes

  • Review
  • Published:
Hernia Aims and scope Submit manuscript

Abstract

Background

 Infectious complications following mesh implantation for abdominal wall repair appear in 0.7 up to 26.6% of hernia repairs and can have a detrimental impact for the patient. To prevent or to treat mesh-related infection, the scientific community is currently developing a veritable arsenal of antibacterial meshes. The numerous and increasing reports published every year describing new technologies indicate a clear clinical need, and an academic interest in solving this problem. Nevertheless, to really appreciate, to challenge, to compare and to optimize the antibacterial properties of next generation meshes, it is important to know which models are available and to understand them.

Purpose

We proposed for the first time, a complete overview focusing only on the in vitro and in vivo models which have been employed specifically in the field of antibacterial meshes for hernia repair.

Results and conclusion

From this investigation, it is clear that there has been vast progress and breadth in new technologies and models to test them. However, it also shows that standardization or adoption of a more restricted number of models would improve comparability and be a benefit to the field of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from [10,11,12,13,14]. (Color figure online)

Fig. 2

Adapted with permission from [40]

Fig. 3

Reprinted with permission from [6, 18, 28, 40, 51, 53, 73]. (Color figure online)

Fig. 4

Similar content being viewed by others

References

  1. Guillaume O, Teuschl AH, Gruber-Blum S, Fortelny RH, Redl H, Petter-Puchner A (2015) Emerging trends in abdominal wall reinforcement: bringing bio-functionality to meshes. Adv Healthc Mater 4(12):1763–1789

    Article  CAS  Google Scholar 

  2. Guillaume O, Perez-Tanoira R, Fortelny R, Redl H, Moriarty TF, Richards RG, Eglin D, Petter Puchner A (2018) Infections associated with mesh repairs of abdominal wall hernias: are antimicrobial biomaterials the longed-for solution? Biomaterials 167:15–31

    Article  CAS  Google Scholar 

  3. Perez-Kohler B, Bayon Y, Bellon JM (2016) Mesh infection and hernia repair: a review. Surg Infect (Larchmt) 17(2):124–137

    Article  Google Scholar 

  4. Vogels RRM, Kaufmann R, van den Hil LCL, van Steensel S, Schreinemacher MHF, Lange JF, Bouvy ND (2017) Critical overview of all available animal models for abdominal wall hernia research. Hernia 21(5):667–675

    Article  CAS  Google Scholar 

  5. The European Committee on antimicrobial susceptibility testing (EUCAST, 2017). Antimicrobial susceptibility testing: EUCAST disk diffusion method , Version 6.0. http://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/

  6. Fernandez-Gutierrez M, Olivares E, Pascual G, Bellon JM, San Roman J (2013) Low-density polypropylene meshes coated with resorbable and biocompatible hydrophilic polymers as controlled release agents of antibiotics. Acta Biomater 9(4):6006–6018

    Article  CAS  Google Scholar 

  7. Hong Y, Fujimoto K, Hashizume R, Guan J, Stankus JJ, Tobita K, Wagner WR (2008) Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning. Biomacromolecules 9(4):1200–1207

    Article  CAS  Google Scholar 

  8. Guillaume O, Garric X, Lavigne JP, Van Den Berghe H, Coudane J (2012) Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro. J Control Release 162(3):492–501

    Article  CAS  Google Scholar 

  9. Laurent T, Kacem I, Blanchemain N, Cazaux F, Neut C, Hildebrand HF, Martel B (2011) Cyclodextrin and maltodextrin finishing of a polypropylene abdominal wall implant for the prolonged delivery of ciprofloxacin. Acta Biomater 7(8):3141–3149

    Article  CAS  Google Scholar 

  10. Junge K, Rosch R, Klinge U, Krones C, Klosterhalfen B, Mertens PR, Lynen P, Kunz D, Preiss A, Peltroche-Llacsahuanga H, Schumpelick V (2005) Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials 26(7):787–793

    Article  CAS  Google Scholar 

  11. Reslinski A, Dabrowiecki S, Glowacka K (2015) The impact of diclofenac and ibuprofen on biofilm formation on the surface of polypropylene mesh. Hernia 19(2):179–185

    Article  CAS  Google Scholar 

  12. Engelsman AF, van der Mei HC, Busscher HJ, Ploeg RJ (2008) Morphological aspects of surgical meshes as a risk factor for bacterial colonization. Br J Surg 95(8):1051–1059

    Article  CAS  Google Scholar 

  13. Majumder A, Scott JR, Novitsky YW (2016) Evaluation of the antimicrobial efficacy of a novel rifampin/minocycline-coated, noncrosslinked porcine acellular dermal matrix compared with uncoated scaffolds for soft tissue repair. Surg Innov 23(5):442–455

    Article  Google Scholar 

  14. Satishkumar R, Sankar S, Yurko Y, Lincourt A, Shipp J, Heniford BT, Vertegel A (2011) Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes. Antimicrob Agents Chemother 55(9):4379–4385

    Article  CAS  Google Scholar 

  15. Guillaume O, Lavigne JP, Lefranc O, Nottelet B, Coudane J, Garric X (2011) New antibiotic-eluting mesh used for soft tissue reinforcement. Acta Biomater 7(9):3390–3397

    Article  CAS  Google Scholar 

  16. Klink CD, Binnebosel M, Lambertz A, Alizai HP, Roeth A, Otto J, Klinge U, Neumann UP, Junge K (2012) In vitro and in vivo characteristics of gentamicin-supplemented polyvinylidenfluoride mesh materials. J Biomed Mater Res A 100(5):1195–1202

    Article  CAS  Google Scholar 

  17. Yurko Y, McDeavitt K, Kumar RS, Martin T, Prabhu A, Lincourt AE, Vertegel A, Heniford BT (2012) Antibacterial mesh: a novel technique involving naturally occurring cellular proteins. Surg Innov 19(1):20–26

    Article  Google Scholar 

  18. Chen J, Howell C, Haller CA, Patel MS, Ayala P, Moravec KA, Dai E, Liu L, Sotiri I, Aizenberg M, Aizenberg J, Chaikof EL (2017) An immobilized liquid interface prevents device associated bacterial infection in vivo. Biomaterials 113:80–92

    Article  CAS  Google Scholar 

  19. Demirer S, Gecim IE, Aydinuraz K, Ataoglu H, Yerdel MA, Kuterdem E (2001) Affinity of Staphylococcus epidermidis to various prosthetic graft materials. J Surg Res 99(1):70–74

    Article  CAS  Google Scholar 

  20. Badiou W, Lavigne JP, Bousquet PJ, O’Callaghan D, Mares P, de Tayrac R (2011) In vitro and in vivo assessment of silver-coated polypropylene mesh to prevent infection in a rat model. Int Urogynecol J 22(3):265–272

    Article  Google Scholar 

  21. Letouzey V, Lavigne JP, Garric X, Coudane J, de Tayrac R, Callaghan DO (2012) Is degradable antibiotic coating for synthetic meshes provide protection against experimental animal infection after fascia repair? J Biomed Mater Res B Appl Biomater 100(2):471–479

    Article  Google Scholar 

  22. Halaweish I, Harth K, Broome AM, Voskerician G, Jacobs MR, Rosen MJ (2010) Novel in vitro model for assessing susceptibility of synthetic hernia repair meshes to Staphylococcus aureus infection using green fluorescent protein-labeled bacteria and modern imaging techniques. Surg Infect (Larchmt) 11(5):449–454

    Article  Google Scholar 

  23. Stoodley P, Sidhu S, Nistico L, Mather M, Boucek A, Hall-Stoodley L, Kathju S (2012) Kinetics and morphology of polymicrobial biofilm formation on polypropylene mesh. FEMS Immunol Med Microbiol 65(2):283–290

    Article  CAS  Google Scholar 

  24. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412

    Article  Google Scholar 

  25. Grafmiller KT, Zuckerman ST, Petro C, Liu L, von Recum HA, Rosen MJ, Korley JN (2016) Antibiotic-releasing microspheres prevent mesh infection in vivo. J Surg Res 206(1):41–47

    Article  CAS  Google Scholar 

  26. Harth KC, Rosen MJ, Thatiparti TR, Jacobs MR, Halaweish I, Bajaksouzian S, Furlan J, von Recum HA (2010) Antibiotic-releasing mesh coating to reduce prosthetic sepsis: an in vivo study. J Surg Res 163(2):337–343

    Article  CAS  Google Scholar 

  27. Engelsman AF, van Dam GM, van der Mei HC, Busscher HJ, Ploeg RJ (2010) In vivo evaluation of bacterial infection involving morphologically different surgical meshes. Ann Surg 251(1):133–137

    Article  Google Scholar 

  28. Poelstra KA, Barekzi NA, Rediske AM, Felts AG, Slunt JB, Grainger DW (2002) Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. J Biomed Mater Res 60(1):206–215

    Article  CAS  Google Scholar 

  29. Bhende S, Barbolt T, Rothenburger S, Piccoli L (2007) Infection potentiation study of synthetic and naturally derived surgical mesh in mice. Surg Infect (Larchmt) 8(3):405–414

    Article  Google Scholar 

  30. Bellows CF, Wheatley BM, Moroz K, Rosales SC, Morici LA (2011) The effect of bacterial infection on the biomechanical properties of biological mesh in a rat model. PLoS One 6(6):e21228

    Article  CAS  Google Scholar 

  31. Belyansky I, Tsirline VB, Martin TR, Klima DA, Heath J, Lincourt AE, Satishkumar R, Vertegel A, Heniford BT (2011) The addition of lysostaphin dramatically improves survival, protects porcine biomesh from infection, and improves graft tensile shear strength. J Surg Res 171(2):409–415

    Article  CAS  Google Scholar 

  32. Belyansky I, Tsirline VB, Montero PN, Satishkumar R, Martin TR, Lincourt AE, Shipp JI, Vertegel A, Heniford BT (2011) Lysostaphin-coated mesh prevents staphylococcal infection and significantly improves survival in a contaminated surgical field. Am Surg 77(8):1025–1031

    PubMed  Google Scholar 

  33. Bury K, Smietanski M, Justyna B, Gumiela P, Smietanska AI, Owczuk R, Naumiuk L, Samet A, Paradziej-Lukowicz J (2014) Effects of macroporous monofilament mesh on infection in a contaminated field. Langenbecks Arch Surg 399(7):873–877

    Article  Google Scholar 

  34. Sadava EE, Krpata DM, Gao Y, Novitsky YW, Rosen MJ (2013) Does presoaking synthetic mesh in antibiotic solution reduce mesh infections? An experimental study. J Gastrointest Surg 17(3):562–568

    Article  Google Scholar 

  35. Cole WC, Balent EM, Masella PC, Kajiura LN, Matsumoto KW, Pierce LM (2015) An experimental comparison of the effects of bacterial colonization on biologic and synthetic meshes. Hernia 19(2):197–205

    Article  Google Scholar 

  36. Deerenberg EB, Mulder IM, Grotenhuis N, Ditzel M, Jeekel J, Lange JF (2012) Experimental study on synthetic and biological mesh implantation in a contaminated environment. Br J Surg 99(12):1734–1741

    Article  CAS  Google Scholar 

  37. Suárez-Grau JM, Morales-Conde S, González Galán V, Martín Cartes JA, Docobo Durantez F, Padillo Ruiz FJ (2015) Antibiotic embedded absorbable prosthesis for prevention of surgical mesh infection: experimental study in rats. Hernia 19(2):187–194

    Article  Google Scholar 

  38. Zhou HY, Zhang J, Yan RL, Wang Q, Fan LY, Zhang Q, Wang WJ, Hu ZQ (2011) Improving the antibacterial property of porcine small intestinal submucosa by nano-silver supplementation: a promising biological material to address the need for contaminated defect repair. Ann Surg 253(5):1033–1041

    Article  Google Scholar 

  39. Harth KC, Broome AM, Jacobs MR, Blatnik JA, Zeinali F, Bajaksouzian S, Rosen MJ (2011) Bacterial clearance of biologic grafts used in hernia repair: an experimental study. Surg Endosc 25(7):2224–2229

    Article  CAS  Google Scholar 

  40. Harth KC, Blatnik JA, Anderson JM, Jacobs MR, Zeinali F, Rosen MJ (2013) Effect of surgical wound classification on biologic graft performance in complex hernia repair: an experimental study. Surgery 153(4):481–492

    Article  Google Scholar 

  41. Cakmak A, Cirpanli Y, Bilensoy E, Yorganci K, Calis S, Saribas Z, Kaynaroglu V (2009) Antibacterial activity of triclosan chitosan coated graft on hernia graft infection model. Int J Pharm 381(2):214–219

    Article  CAS  Google Scholar 

  42. Ott R, Hartwig T, Tannapfel A, Blatz R, Rodloff AC, Madaj-Sterba P, Mobius C, Kockerling F (2007) Biocompatibility of bacterial contaminated prosthetic meshes and porcine dermal collagen used to repair abdominal wall defects. Langenbecks Arch Surg 392(4):473–478

    Article  CAS  Google Scholar 

  43. Saygun O, Agalar C, Aydinuraz K, Agalar F, Daphan C, Saygun M, Ceken S, Akkus A, Denkbas EB (2006) Gold and gold-palladium coated polypropylene grafts in a S. epidermidis wound infection model. J Surg Res 131(1):73–79

    Article  CAS  Google Scholar 

  44. Pérez-Tanoira R, Lévano-Linares C, Celdrán-Uriarte Á, Isea-Peña MC, De Molina MS, García-Vasquez C, Esteban-Moreno J (2016) Use of an experimental model to evaluate infection resistance of meshes in abdominal wall surgery. J Surg Res 206(2):435–441

    Article  Google Scholar 

  45. Carbonell AM, Matthews BD, Dreau D, Foster M, Austin CE, Kercher KW, Sing RF, Heniford BT (2005) The susceptibility of prosthetic biomaterials to infection. Surg Endosc 19(3):430–435

    Article  CAS  Google Scholar 

  46. Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V (2002) Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res 63(6):765–771

    Article  CAS  Google Scholar 

  47. Blatnik JA, Krpata DM, Jacobs MR, Gao Y, Novitsky YW, Rosen MJ (2012) In vivo analysis of the morphologic characteristics of synthetic mesh to resist MRSA adherence. J Gastrointest Surg 16(11):2139–2144

    Article  Google Scholar 

  48. Medberry CJ, Tottey S, Jiang HB, Johnson SA, Badylak SF (2012) Resistance to infection of five different materials in a rat body wall model. J Surg Res 173(1):38–44

    Article  Google Scholar 

  49. Mulder IM, Deerenberg EB, Bemelman WA, Jeekel J, Lange JF (2015) Infection susceptibility of crosslinked and non-crosslinked biological meshes in an experimental contaminated environment. Am J Surg 210(1):159–166

    Article  Google Scholar 

  50. Kaufmann R, Jairam AP, Mulder IM, Wu Z, Verhelst J, Vennix S, Giesen LJX, Clahsen-van MC, Groningen J, Jeekel JF, Lange (2017) Characteristics of different mesh types for abdominal wall repair in an experimental model of peritonitis. Br J Surg 104:1884–1893

    Article  CAS  Google Scholar 

  51. Bellon JM, Garcia-Carranza A, Garcia-Honduvilla N, Carrera-San Martin A, Bujan J (2004) Tissue integration and biomechanical behaviour of contaminated experimental polypropylene and expanded polytetrafluoroethylene implants. Br J Surg 91(4):489–494

    Article  CAS  Google Scholar 

  52. Bellon JM, Contreras LA, Bujan J (2000) Ultrastructural alterations of polytetrafluoroethylene prostheses implanted in abdominal wall provoked by infection: clinical and experimental study. World J Surg 24(5):528–531

    Article  CAS  Google Scholar 

  53. Garcia-Pumarino R, Pascual G, Rodriguez M, Perez-Kohler B, Bellon JM (2014) Do collagen meshes offer any benefits over preclude (R) ePTFE implants in contaminated surgical fields? A comparative in vitro and in vivo study. J Biomed Mater Res Part B Appl Biomater 102(2):366–375

    Article  Google Scholar 

  54. Perez-Kohler B, Garcia-Moreno F, Brune T, Pascual G, Bellon JM (2015) Preclinical bioassay of a polypropylene mesh for hernia repair pretreated with antibacterial solutions of chlorhexidine and allicin: an in vivo study. PLoS One 10(11):e0142768

    Article  Google Scholar 

  55. Goeau-Brissonniere O, Leflon V, Letort M, Nicolas MH (1999) Resistance of antibiotic-bonded gelatin-coated polymer meshes to Staphylococcus aureus in a rabbit subcutaneous pouch model. Biomaterials 20(3):229–232

    Article  CAS  Google Scholar 

  56. Diaz-Godoy A, Garcia-Urena MA, Lopez-Monclus J, Ruiz VV, Montes DM, Agurto NE (2011) Searching for the best polypropylene mesh to be used in bowel contamination. Hernia 15(2):173–179

    Article  CAS  Google Scholar 

  57. Fernandez-Moure JS, Van Eps JL, Peress L, Cantu C, Olsen RJ, Jenkins L, Cabrera FJ, Tasciotti E, Weiner BK, Dunkin BJ (2017) Increased use of surgical energy promotes methicillin-resistant Staphylococcus aureus colonization in rabbits following open ventral hernia mesh repair. Surg Endosc 31(2):852–860

    Article  Google Scholar 

  58. Stoikes NFN, Scott JR, Badhwar A, Deeken CR, Voeller GR (2017) Characterization of host response, resorption, and strength properties, and performance in the presence of bacteria for fully absorbable biomaterials for soft tissue repair. Hernia 21(5):771–782

    Article  CAS  Google Scholar 

  59. Smith S, Gantt N, Rowe MI, Lloyd DA (1989) Dura versus gore-tex as an abdominal wall prosthesis in an open and closed infected model. J Pediatr Surg 24(6):519–521

    Article  CAS  Google Scholar 

  60. Brown GL, Richardson JD, Malangoni MA, Tobin GR, Ackerman D, Polk HC (1985) Comparison of prosthetic materials for abdominal wall reconstruction in the presence of contamination and infection. Ann Surg 201(6):705–711

    Article  CAS  Google Scholar 

  61. Blatnik JA, Thatiparti TR, Krpata DM, Zuckerman ST, Rosen MJ, von Recum HA (2017) Infection prevention using affinity polymer-coated, synthetic meshes in a pig hernia model. J Surg Res 219:5–10

    Article  CAS  Google Scholar 

  62. Krizek TJ, Robson MC (1975) Evolution of quantitative bacteriology in wound management. Am J Surg 130(5):579–584

    Article  CAS  Google Scholar 

  63. Buer J, Balling R (2003) Mice, microbes and models of infection. Nat Rev Genet 4(3):195–205

    Article  CAS  Google Scholar 

  64. Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA, Schultz MJ, Grainger DW (2012) Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 4(153):153rv10

    Article  Google Scholar 

  65. Bryda EC (2013) The mighty mouse: the impact of rodents on advances in biomedical research. Mol Med 110(3):207–211

    Google Scholar 

  66. Suckow MA, Stevens KA, Wilson RP (2012) The laboratory rabbit, guinea pig, hamster, and other rodents. A volume in American College of Laboratory Animal Medicine, Elsevier Inc. (Ed.), Amsterdam, pp 1–1268

    Google Scholar 

  67. Chemali JJ, Kenny JD, Olutola O, Taylor NE, Kimchi EY, Purdon PL, Brown EN, Solt K (2015) Ageing delays emergence from general anaesthesia in rats by increasing anaesthetic sensitivity in the brain. Br J Anaesth 115(Suppl 1):i58–i65

    Article  Google Scholar 

  68. Martín-Zúñiga J (2014) Ciencia y tecnología en experimentación y protección animal. University of Alcalá, Spanish Association of Laboratory Animal Science (SECAL), University of Alcalá Health Science Textbooks, Alcalá de Henares, pp 1–969

    Google Scholar 

  69. Jensen LK, Johansen ASB, Jensen HE (2017) Porcine models of biofilm infections with focus on pathomorphology. Front Microbiol 8:1961

    Article  Google Scholar 

  70. Padilla-Carlin DJ, McMurray DN, Hickey AJ (2008) The guinea pig as a model of infectious diseases. Comp Med 58(4):324–340

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Majumder A, Petro CC, Liu L, Fayezizadeh M, Novitsky YW (2016) Development of a novel murine model for treatment of infected mesh scenarios. Surg Endosc 31:922–927

    Article  Google Scholar 

  72. Petter-Puchner AH, Fortelny RH (2015) The heart of darkness. Hernia 19(2):195–196

    Article  CAS  Google Scholar 

  73. Kathju S, Nistico L, Melton-Kreft R, Lasko LA, Stoodley P (2015) Direct demonstration of bacterial biofilms on prosthetic mesh after ventral herniorrhaphy. Surg Infect (Larchmt) 16(1):45–53

    Article  Google Scholar 

  74. Majumder A, Neupane R, Novitsky YW (2015) Antibiotic coating of hernia meshes: the next step toward preventing mesh infection. Surg Technol Int 27:147–153

    PubMed  Google Scholar 

  75. Perez-Kohler B, Sotomayor S, Rodriguez M, Gegundez MI, Pascual G, Bellon JM (2015) Bacterial adhesion to biological versus polymer prosthetic materials used in abdominal wall defect repair: do these meshes show any differences in vitro? Hernia 19(6):965–973

    Article  CAS  Google Scholar 

  76. Celdrán A, Esteban J, Mañas J, Granizo JJ (2007) Wound infections due to Mycobacterium fortuitum after polypropylene mesh inguinal hernia repair. J Hosp Infect 66(4):374–377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Guillaume.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Ethical approval

Approval from the institutional review board was not required for this study.

Human and animal rights

This article does not contain any studies with human participants or animals peformed by any of the authors.

Informed consent

For this literature review, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillaume, O., Pérez Kohler, B., Fortelny, R. et al. A critical review of the in vitro and in vivo models for the evaluation of anti-infective meshes. Hernia 22, 961–974 (2018). https://doi.org/10.1007/s10029-018-1807-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10029-018-1807-z

Keywords

Navigation