Skip to main content
Log in

Epilepsy-Induced Microarchitectural Changes in the Brain

Pediatric and Developmental Pathology

Abstract

Our understanding of the pathogenesis of the neuropathology of epilepsy has been challenged by a need to separate the “lesions” that cause epilepsy from the “lesions” that are produced by the epilepsy. Significant clinical, genetic, pathologic, and experimental studies of Ammon horn sclerosis (AHS) suggest that AHS is the result and cause of seizures. The data support the idea that seizures cause alterations in cell numbers, cell shape, and organization of neuronal circuitry, thus setting up an identifiable seizure-genic focus. As such, AHS represents a slowly progressive lesion and a search for the cause of the initiating seizure has led to the identification of ion channel mutations. In this report, the neuropathology of other conditions associated with intractable epilepsy is considered, suggesting that in them similar epilepsy-produced alterations in microarchitecture can be observed. The idea is important to define the optimum time for epilepsy surgery and the underlying etiology of these seizure-genic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Sutula TP, Pitkanen A. More evidence for seizure-induced neuronal loss. Is hippocampal sclerosis both cause and effect of epilepsy? Neurology 2001;57:169–170

    PubMed  CAS  Google Scholar 

  2. Margerison JH, Corsellis JAN. Epilepsy and the temporal lobes: a clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 1966;89:499–505

    PubMed  CAS  Google Scholar 

  3. Daumas-Duport C, Scheithauer BW, Chodkiewcz JP, Laws ER Jr, Vedrenne C. Dysembryoplastic neuroepithelial tumor: a surgically curable tumor of young patients with intractable partial seizures: report of thirty-nine cases. Neurosurgery 1988;23:545–556

    PubMed  CAS  Google Scholar 

  4. Taylor DC, Falconer MA, Bruton CJ, Corsellis JAN. Focal cortical dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry 1971;34:369–387

    PubMed  CAS  Google Scholar 

  5. Rasmussen T, Olszewski J, Lloyd-Smith D. Focal seizures due to chronic localized encephalitis. Neurology 1958;8:435–445

    PubMed  CAS  Google Scholar 

  6. Meencke HJ, Janz D. Neuropathological findings in primary generalized epilepsy: a study of eight cases. Epilepsia 1984;25:8–21

    PubMed  CAS  Google Scholar 

  7. Meenke HJ, Janz D. The significance of microdysgenesis in primary generalized epilepsy: an answer to the considerations of Lyon and Gas taut. Epilepsia 1985;26:368–371

    Google Scholar 

  8. Armstrong DD, Mizrahi EM. Pathology of epilepsy in childhood. In: Scaravilli F, ed. Neuropathology of Epilepsy. Singapore: World Scientific, 1997;169–339.

    Google Scholar 

  9. Thom M, Scaravilli F. The neuropathology of epilepsy in adults. In: Scaravilli F, ed. Neuropathology of Epilepsy. Singapore: World Scientific, 1997;169–339.

    Google Scholar 

  10. Hardiman O, Burke T, Phillips J, Murphy SO, Moore B, Staunton H, Farrell MA. Microdysgenesis in resected temporal neocortex: incidence and clinical significance in focal epilepsy. Neurology 1988;38:1041–1047

    PubMed  CAS  Google Scholar 

  11. Rojinai M, Emery JA, Anderson KJ, Massey JK. Distribution of heterotopic neurons in normal hemispheric white matter. A morphometric analysis. J Neuropathol Exp Neurol 1996;55:178–183

    Google Scholar 

  12. Yachnis AT, Askin TA. Distinct developmental programs of BCL2 and BCLX are altered in glioneuronal hamartias of the temporal lobe. J Neuropathol Exp Neurol 1996;55:630

    Google Scholar 

  13. Krishnan B, Armstrong DL, Grossman RG, Zhu ZQ, Rutechi PA, Mizrahi EM. Glial cell nuclear hypertrophy in complex partial seizures. J Neuropathol Exp Neurol 1994;53:502–507

    PubMed  CAS  Google Scholar 

  14. Kendal C, Everall I, Polkey C, Al-Sarraj S. Glial cell changes in the white mater in temporal lobe epilepsy. Epilepsy Res 1999;36:43–51

    Article  PubMed  CAS  Google Scholar 

  15. Raymond AA, Fish DR, Stevens JM, Cook MJ, Sisodiya MA, Shorvon SD. Association of hippocampal sclerosis with cortical dysgenesis in patients with epilepsy. Neurology 1994;44:1841–1845

    PubMed  CAS  Google Scholar 

  16. Honavar M, Meldrum BC. Epilepsy. In: Graham, Lantos, eds. Greenfield’s Neuropathology, Volume 2, 7th ed. London: Arnold, 2002;899–941

  17. Liu Z, Mikati M, Holmes GL. Mesial temporal sclerosis: pathogenesis and significance. Pediatr Neurol 1995;12:5–16

    PubMed  CAS  Google Scholar 

  18. Falconer MA, Serafetinides EA, Corsellis JAN. Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol 1964;10:233–248

    PubMed  CAS  Google Scholar 

  19. York M, Rettig GM, Grossman RG, Hamilton WJ, Armstrong DL, Levin HS, Mizrahi EM. Seizure control and cognition outcome after temporal lobectomy: a comparison of classic Ammon’s horn sclerosis, atypical mesial temporal sclerosis and tumoral pathology. Epilepsia 2003;44:387–398

    Article  PubMed  Google Scholar 

  20. Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH. Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 1984;25:729–740

    PubMed  CAS  Google Scholar 

  21. Mathern GW, Babb T, Armstrong Dl. Hippocampal sclerosis. In: Engel J, Pedley TA, eds. Epilepsy; a Comprehensive Textbook. New York: Lippincott-Raven, 1998;133–155

    Google Scholar 

  22. Olney JW, Collins RC, Sloviter RS. Excitotoxic mechanisms of epileptic brain damage. In: Delgado-Escueta AV, Ward AA Jr, Woodbury DM, Porter RJ, eds. Advances in Neurology. New York: Raven Press; 1986

  23. Dam A. Epilepsy and neuronal loss in the hippocampus. Epilepsia 1980;221:617–629

    Google Scholar 

  24. Tasch E, Cendes F, Li LM, Dubeau F, Andermann F, Arnold DL. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann Neurol 1999;45:568–576

    Article  PubMed  CAS  Google Scholar 

  25. Fernandez G, Effenberger O, Vinz B, Steinlein O, Elger CE, Dohring W, Heinze HJ. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 1998;50:909–917

    PubMed  CAS  Google Scholar 

  26. Ryan SG. Ion channels and the genetic contribution to epilepsy. J Child Neurol 1999;14:56–66

    Google Scholar 

  27. Wallace RH, Wang DW, Sing R, at al. Febrile seizures, generalized epilepsy associated with a mutation in the Na+ channel β1 subunit gene SCN1B. Nat Gene 1998;366–370

  28. Brewster A, Bender RA, Chen Y, Dube C, Eghbbal-Ahmade M, Baram TZ. Developmental febrile seizures modulate hippocampal gene expression of hyper polarization-activated channels in an isoform-and cell-specific manner. J Neurosci 2002;22:4591–4599

    PubMed  CAS  Google Scholar 

  29. Mathern GW, Babb TL, Micevych PE, Blanco CE, Pretorius JK. Granule cell mRNA levels for BDNF, NGF, NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damages and epileptic human hippocampus. Mol Chem Neuropathol 1997;30:53–76

    Article  PubMed  CAS  Google Scholar 

  30. Villeneuve N, Ben-Ari Y, Holmes Gl, Gaiarsa JL. Neonatal seizures induced persistent changes in intrinsic properties of CA1 rat hippocampal cells. Ann Neurol 2000;47:729–738

    Article  PubMed  CAS  Google Scholar 

  31. Marco P, de Felipe J. Altered synaptic circuitry in the human temporal neocortex removed from epileptic patients. Exp Brain Res 1997;114:1–10

    PubMed  CAS  Google Scholar 

  32. Ericksson PS, Perfilieva E. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313–1317

    Google Scholar 

  33. Nakagawa E, Aimi Y, Yasuharo, et al. Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbic seizure in rat models of epilepsy. Epilepsia 2000;41:12–18

    Article  Google Scholar 

  34. Arnold SE, Trojanowski JQ. Human fetal hippocampal development; cytoarchitecture, myeloarchitecture and neuronal morphologic features. J Comp Neurol 1996;367:274–292

    PubMed  CAS  Google Scholar 

  35. Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorder of the hippocampus. J Neurosci 1992;12:4846–4853

    PubMed  CAS  Google Scholar 

  36. Hauser CR. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 1990;535:195–204

    Google Scholar 

  37. Houser C, Miyashirso JE, Swartz BE. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990;10:267–282

    PubMed  CAS  Google Scholar 

  38. Bengzon J, Kokaia Z, Elmer E, Nanobashvili A, Kokaia M, Lindvall O. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 1997;94:10432–10437

    Article  PubMed  CAS  Google Scholar 

  39. Sloviter RS. Decreased hippocampal inhibition and selective loss of interneurons in experimental epilepsy. Science 1987;235:73–76

    PubMed  CAS  Google Scholar 

  40. deLannerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989;495:387–395

    Google Scholar 

  41. De Felipe J. Chandelier cells and epilepsy. Brain 1999;122:1807–1822

    Google Scholar 

  42. Sutula T, Casino G, Cavozos, et al. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989;26:3321–3330

    Article  Google Scholar 

  43. vonCampe G, Spencer DD, deLanerolle NC. Morphology of dentate granule cells in the human epileptogenic hippocampus. Hippocampus 1997;7:472–488

    CAS  Google Scholar 

  44. Blumcke I, Zuschratter W, Schewe JC, et al. Cellular pathology of hilar neurons in Ammon’s horn sclerosis. J Comp Neurol 1999;414:437–453

    PubMed  CAS  Google Scholar 

  45. Goldstein DS, Nadi NS, Stull R, Wyler AR, Porter RJ. Levels of catechols in epileptogenic and nonepileptogenic regions of human brain. J Neurochem 1988;50:225–229

    PubMed  CAS  Google Scholar 

  46. Zhu Z, Armstrong DL, Grossman RG, Hamilton WJ. Tyrosine hydroxylase-immunoreactive neurons in the temporal lobe in complex partial seizures. Ann Neurol 1990;27:564–572

    Article  PubMed  CAS  Google Scholar 

  47. Armstrong DL, Grossman RG, Zhu Z. Complex partial epilepsy: evidence of a malformative process in the resected anterior temporal lobes of thirty-three patients. J Neuropathol Exp Neurol 19876;46:359

    Google Scholar 

  48. Marin-Padilla M, Paresis JE, Armstrong DL, Sargent SK, Kaplan JA. Shaken infant syndrome: developmental neuropathology, progressive cortical dysplasia and epilepsy. Acta Neuropathol 2002;103:321–332

    PubMed  Google Scholar 

  49. Palmini A, Najm I, Avanzini G, et al. Terminology and classification of the cortical dysplasias. Neurology 2004;62(suppl 3):S2–S8

    PubMed  CAS  Google Scholar 

  50. Multani P, Myers RH, Blume HW, Schomer D, Sotrel A. Neocortical dendritic pathology in human partial epilepsy: a quantitative Golgi study. Epilepsia 1994;35: 728–736

    Article  PubMed  CAS  Google Scholar 

  51. Duong T, De Rosa MJ, Poukens V, Vinters HV. Neuronal cytoskeletal abnormalities in human cerebral cortical dysplasia. Acta Neuropathol 1994;87:493–503

    PubMed  CAS  Google Scholar 

  52. Madsen JR,Valla AV, Poussaint TY, Scott RM, De Girtolami R, Anthony DC. Focal cortical dysplasia with glioproliferative changes causing seizures: report of 3 cases. Pediatr Neurosurg 1998;28:261–266

    PubMed  CAS  Google Scholar 

  53. Bien CG, Urbach H, Deckert M, Schramm J, Wiestler OD, Lassman H, Elger CE. Diagnosis and staging of Rasmussen’s encephalitis by serial MRI and histopathology. Neurology 2002;58:250–257

    PubMed  CAS  Google Scholar 

  54. Bien CG, Bauer J, Deckworth TL, et al. Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen’s encephalitis. Ann Neurol 2002;51:3311–3318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This report was presented at a symposium dedicated to Dr. Laurence Becker. Larry and I shared a privileged heritage: we were raised on the uniquely beautiful Canadian prairie, we were trained by the outstanding mentor, Dr. Barry Rewcastle, and we were partners in neuropathology at the Hospital for Sick Children and in our studies of the developing human brain. Larry lived and worked with quiet, thoughtful dedication and has honored our heritage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawna Duncan Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, D.D. Epilepsy-Induced Microarchitectural Changes in the Brain. Pediatr Dev Pathol 8, 607–614 (2005). https://doi.org/10.1007/s10024-005-0054-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10024-005-0054-3

Keywords

Navigation