Skip to main content
Log in

Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

This study determined in temporal lobe epilepsy patients if there were correlations among hippocampal granule cell expression of neurotrophin mRNAs, aberrant supragranular mossy fiber sprouting, and neuron losses. Consecutive surgically resected hippocampi (n=9) and comparison tissue from autopsies (n=3) were studied for:

  1. 1.

    Granule cell mRNA levels usingin situ hybridization for brainderived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3);

  2. 2.

    neo-Timm supragranular mossy fiber sprouting; and

  3. 3.

    Ammon’s horn neuron densities.

Clinically, patients were classified into those with hippocampal sclerosis (HS;n=7) and non-HS cases (i.e., mass lesions and autopsies;n=5). Results showed that compared to non-HS cases, HS patients showed increased granule cell mRNA levels for BDNF, NGF, and NT-3 (p=0.035,p=0.04,p=0.045 respectively; one-tail directional test). Moreover, granule cell BDNF mRNA levels correlated inversely with Ammon’s horn neuron densities (p=0.02) and correlated positively with greater supragranular mossy fiber sprouting (p=0.02). NGF mRNA levels correlated inversely with Ammon’s horn neuron densities (p=0.02), and TN-3 mRNA levels correlated inversely with age at surgery (p=0.04) and correlated positively with greater mossy fiber sprouting (p=0.026). These results indicate in the chronically damaged human hippocampus that granule cells express neurotrophin mRNAs, and mRNA levels correlate with either hippocampal neuron losses or aberrant supragranular mossy fiber sprouting. These data support the hypothesis that in the epileptic human hippocampus, there may be pathophysiologic associations among mossy fiber synaptic plasticity, hippocampal neuron damage, and granule cell mRNA neurotrophin levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie M. (1946) Estimation of nuclear population from microtome sections.Anat. Rec. 94, 239–247.

    Article  Google Scholar 

  • Ayer-LeLievre C., Olson L., Ebendal T., Seiger A., and Persson H. (1988) Expression of the β-nerve growth factor gene in hippocampal neurons.Science 240, 1339–1341.

    Article  PubMed  CAS  Google Scholar 

  • Babb T. L. (1991) Research on the anatomy and pathology of epileptic tissue, inEpilepsy Surgery (Lüders H., ed.) Raven, New York, pp. 719–727.

    Google Scholar 

  • Babb, T. L. and Brown W. J. (1987) Pathological findings in epilepsy, inSurgical Treatment of the Epilepsies (Engel J. Jr., ed.), Raven, New York, pp. 511–540.

    Google Scholar 

  • Babb T. L., Lieb J. P., Brown W. J., Pretorius J., and Crandall P. H. (1984a) Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampus.Epilepsia 25, 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Babb T. L., Brown W. J., Pretorius J., Davenport C., Lieb J. P., and Crandall P. H. (1984b) Temporal lobe volumetric cell densities in temporal lobe epilepsy.Epilepsia 25, 729–740.

    Article  PubMed  CAS  Google Scholar 

  • Babb T. L., Pretorius J. K., Kupfer W. R., and Crandall, P. H. (1989) Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus.J. Neurosci. 9, 2562–2574.

    PubMed  CAS  Google Scholar 

  • Babb T. L., Kupfer W. R., Pretorius J. K., Crandall P. H., and Levesque M. F. (1991) Synaptic reorganization by mossy fibers in human epileptic fascia dentata.Neuroscience 42, 351–363.

    Article  PubMed  CAS  Google Scholar 

  • Babb T. L., Mathern G. W., Pretorius J. K., and Blanco C. (1992) In situ hybridization of brain-derived neurotrophic factor (BDNF) in human epileptic fascia dentata with supragranular neoinnervation.Epilepsia 33, Suppl. 3, 23.

    Google Scholar 

  • Babb T. L., Mathern G. W., and Pretorius J. K. (1993) Differential upregulation of mRNA neurotrophic factors in granule cells of the human sprouted epileptic fascia dentata.Epilepsia 34, Suppl. 2, 114.

    Google Scholar 

  • Ballarin M., Ernfors P., Lindefors N., and Persson H. (1991) Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in the rat brain.Exp. Neurol. 114, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Beck T., Lindholm, D., Castren E., and Wree A. (1994) Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus.J. Cereb. Blood Flow Metab. 14, 689–692.

    PubMed  CAS  Google Scholar 

  • Chao M. V. (1992) Neurotrophin receptors: a window into neuronal differentiation.Neuron 9, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Cheng B. and Mattson M. P. (1994) NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults.Brain Res. 640, 56–67.

    Article  PubMed  CAS  Google Scholar 

  • Collazo D., Takahashi H., and McKay R. D. G. (1992) Cellular targets and trophic functions of neurotrophin-3 in the developing rat hippocampus.Neuron 9, 643–656.

    Article  PubMed  CAS  Google Scholar 

  • Crandall P. H. (1987) Cortical resections, inSurgical Treatment of the Epilepsies (Engel J. Jr., ed.) Raven, New York, pp. 377–404.

    Google Scholar 

  • Crandall P. H., Walter R. D., and Rand R. W. (1963) Clinical applications of studies of stereotactically implanted electrodes in temporal-lobe epilepsy.J. Neurosurg. 20, 827–840.

    Article  PubMed  CAS  Google Scholar 

  • De Lacalle S., Lim C., Sobreviela T., Mufson E. J., Hersh, L. B., and Saper, C. B. (1994) Cholinergic innervation in the human hippocampal formation including the entorhinal cortex.J. Compar. Neurol. 345, 321–344.

    Article  Google Scholar 

  • DiStefano P. S., Friedman B., Radziejewski C., Alexander C., Boland P., Schick C. M., Lindsay R. M., and Wiegand S. J. (1992) The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons.Neuron 8, 983–993.

    Article  PubMed  CAS  Google Scholar 

  • Dournaud P., Cervera-Pierot P., Hirsch E., Javoy-Agid F., Kordon C. L., Agid Y., and Epelbaum J. (1994) Somatostatin messenger RNA-containing neurons in Alzheimer’s disease: anin situ hybridization study in hippocampus, parahippocampal cortex and frontal cortex.Neuroscience 61, 755–764.

    Article  PubMed  CAS  Google Scholar 

  • Dugich-Djordjevic M. M., Tocco G., Lapchak P. A., Pasinetti G. M., Najm I., Baudry, M., and Hefti F. (1992a) Regionally specific and rapid increases in brain-derived neurotrophic factor messenger RNA in the adult rat brain following seizures induced by systemic administration of kainic acid.Neuroscience 47, 303–315.

    Article  PubMed  CAS  Google Scholar 

  • Dugich-Djordjevic M. M., Tocco G., Willoughby D. A., Najm I., Pasinetti G., Thompson R. F., Baudry M., Lapchak P. A., and Hefti F. (1992b) BDNF mRNA expression in the developing rat brain following kainic acid-induced seizure activity.Neuron 8, 1127–1138.

    Article  PubMed  CAS  Google Scholar 

  • Ebendal T. (1992) Function and evolution in the NGF family and its receptors.J. Neurosci. Res. 32, 461–470.

    Article  PubMed  CAS  Google Scholar 

  • Engel J. Jr. (1987) Outcome with respect to epileptic seizures, inSurgical Treatment of the Epilepsies (Engel J. Jr., ed) Raven, New York, pp. 553–571.

    Google Scholar 

  • Engel J. Jr. (1993) Protocols for the University of California, Los Angeles, inSurgical Treatment of the Epilepsies, 2nd ed. (Engel J., Jr. ed.) Raven, New York, pp. 743–745.

    Google Scholar 

  • Engel J. Jr. Levesque M., Crandall P. H., Shewman A., Rausch R., and Sutherling W. (1991) The epilepsies, inPrinciples of Neurosurgery (Grossman R. G., ed.) Raven, New York, pp. 319–358.

    Google Scholar 

  • Ernfors P., Ebendal T., Olson L., Mouton P., Strömberg I., and Persson, H. (1989) A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons.Proc. Natl. Acad. Sci. USA 86, 4756–4760.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P., Wetmore C., Olson L., and Persson H. (1990) Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family.Neuron 5, 511–526.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P., Bengzon J., Kokaia Z., Persson H., and Lindvall O. (1991) Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis.Neuron 7, 165–176.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P., Merlio J.-P., and Persson H. (1992) Cells expressing mRNA for neurotrophins and their receptors during embryonic rat development.Eur. J. Neurosci. 4, 1140–1158.

    Article  PubMed  Google Scholar 

  • Falkenberg T., Metsis M., Timmusk T., and Lindefors N. (1993) Entorhinal cortex regulation of multiple brain-derived neurotrophic factor promoters in the rat hippocampus.Neuroscience 57, 891–896.

    Article  PubMed  CAS  Google Scholar 

  • Friedman W. J., Olson L., and Persson H. (1991) Cells that express brain-derived neurotrophic factor mRNA in the developing postnatal rat brain.Eur. J. Neurosci. 3, 688–697.

    Article  PubMed  Google Scholar 

  • Gage F. H., Olejniczak P., and Armstrong D. M. (1988) Astrocytes are important for sprouting in the septohippocampal circuit.Exp. Neurol. 102, 2–13.

    Article  PubMed  CAS  Google Scholar 

  • Gall C. M. (1993) Seizure-induced changes in neurotrophin expression: Implications for epilepsy.Exp. Neurol. 124, 150–166.

    Article  PubMed  CAS  Google Scholar 

  • Gall C. and Lauterborn J. (1992) The dentate gyrus: a model system for studies of neurotrophin regulation, inThe Dentate Gyrus and Its Role in Seizures (Epilepsy Research), suppl. 7 (Ribak C. E., Gall C. M., and Mody I., eds.), Elsevier, Amsterdam, pp. 171–185.

    Google Scholar 

  • Gall C., Murray K., and Isackson P. J. (1991) Kainic acid-induced seizures stimulate increased expression of nerve growth factor mRNA in rat hippocampus.Mol. Brain Res. 9, 113–123.

    Article  PubMed  CAS  Google Scholar 

  • Gwag B. J., Sessler F. M., Waterhouse B. D., and Springer J. E. (1993) Regulation of nerve growth factor mRNA in the hippocampal formation effects ofN-methyl-d-aspartate receptor activation.Exp. Neurol. 121, 160–171.

    Article  PubMed  CAS  Google Scholar 

  • Heacock A. M., Schonfeld A. R., and Katzman R. (1986) Hippocampal neurotrophic factor: characterization and response to denervation.Brain Res. 363, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Hofer M. M. and Barde Y.-A. (1988) Brain-derived neurotrophic factor prevents neuronal deathin vivo.Nature 331, 261–262.

    Article  PubMed  CAS  Google Scholar 

  • Isackson P. J., Huntsman M. M., Murray K. D., and Gall C. M. (1991) BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF.Neuron 6, 937–948.

    Article  PubMed  CAS  Google Scholar 

  • Lapchak P. A., Araujo D. M., and Hefti F. (1993) BDNF and trkB mRNA expression in the rat hippocampus following entorhinal cortex lesions.Mol. Neurosci. 4, 191–194.

    Article  CAS  Google Scholar 

  • Lauterborn J. C., Isackson P. J., and Gall C. M. (1994) Seizure-induced increases in NGF mRNA exhibit different time courses across forebrain regions and are biphasic in hippocampus.Exp. Neurol. 125, 22–40.

    Article  PubMed  CAS  Google Scholar 

  • Leibrock J., Lottspeich F., Holn A., Hofer M., Hengerer B., Masiakowski P., Thoenen H., and Barde Y. (1989) Molecular cloning and expression of brain-derived neurotrophic factor.Nature 341, 149–152.

    Article  PubMed  CAS  Google Scholar 

  • Lindholm, D., Castren E., Berzaghi M. P., and Thoenen H. (1993) Effects of neurotransmitters and hormones on neuronal production of neurotrophins.Sem. Neurosci. 5, 279–283.

    Article  CAS  Google Scholar 

  • Lindvall O., Ernfors P., Bengzon J., Kokaia Z., Smith M.-L., Siesjo B. K., and Persson H. (1992) Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma.Proc. Nat. Acad. Sci. USA 89, 648–652.

    Article  PubMed  CAS  Google Scholar 

  • Lorente de No R. (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system.J. Psychol. Neurol. 45, 113–177.

    Google Scholar 

  • Lowenstein D. H., Seren M. S., and Longo F. M. (1993) Prolonged increases in neurotrophic activity associated with kainate-induced hippocampal synaptic reorganization. PitNeuroscience56 597–604.

    Article  CAS  Google Scholar 

  • Maisonpierre P. C., Belluscio L., Friedman B., Alderson R. F., Wiegand S. J., Furth M. E., Lindsay R. M., and Yancopoulos G. D. (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression.Neuron 5, 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Mathern G. W., Kupfer W. R., Pretorius J. K., Babb T. L. and Levesque M. F. (1992) Onset and patterns of hippocampal sprouting in the rat kainate seizure model: evidence for progressive cell loss and neoinnervation in regio inferior and superior.Dendron 1, 69–84.

    Google Scholar 

  • Mathern G. W., Cifuentes F., Leite J. P., Pretorius J. K. and Babb T. L. (1993) Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainate model.EEG Clin. Neurophysiol. 87, 326–339.

    Article  CAS  Google Scholar 

  • Mathern G. W., Leite J. P., pretorius J. K., Quinn B., Peacock W. J., and Babb T. L. (1994a) Children with severe epilepsy: evidence of hippocampal neuron losses and aberrant mossy fiber sprouting during postnatal granule cell migration and differentiation.Dev. Brain Res. 78, 70–80.

    Article  CAS  Google Scholar 

  • Mathern G. W., Babb T. L., Vickrey B. G., Melendez M. and Pretorius J. K. (1994b) Traumatic compared to non-traumatic clinical-pathologic associations in temporal lobe epilepsy.Epilepsy Res. 19, 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Mathern G. W., Pretorius J. K. and Babb T. L. (1995a) Quantified patterns of mossy fiber sprouting and neuron densities in hippocampal and lesional seizures.J. Neurosurg. 82, 211–219.

    PubMed  CAS  Google Scholar 

  • Mathern G. W., Pretorius J. K. and Babb T. L. (1995b) Influence of the type of initial precipitating injury and at what age it occurs on course and outcome in patients with temporal lobe seizures.J. Neurosurg 82, 220–227.

    PubMed  CAS  Google Scholar 

  • Mathern G. W., Pretorius J. K., Quinn B., and Babb T. L. (1995c) Unilateral hippocampal mossy fiber sprouting and bilateral asymmetric neuron loss with episodic postiatal psychosis.J. Neurosurg. 82, 228–233.

    PubMed  CAS  Google Scholar 

  • Mathern G. W., Babb T. L., Vickrey B. G., Melendez M. and Pretorius J. K. (1995d) The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy.Brain 118, 105–118.

    Article  PubMed  Google Scholar 

  • Mathern G. W., Babb T. L., Pretorius J. K. and Leite J. P. (1995e) Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata.J. Neurosci. 15, 3990–4004.

    PubMed  CAS  Google Scholar 

  • Mathern G. W., Babb T. L., Pretorius J. K., Melendez M. and Levesque M. F. (1995f) The relationships between clinical features, lesion pathology, and hippocampal neuron losses in temporal lobe epilepsy.Epilepsy Res. 21, 133–147.

    Article  PubMed  CAS  Google Scholar 

  • Mathern G. W., Armstrong D. L., and Babb T. L. (1996) Hippocampal sclerosis, inEpilepsy: A Comprehensive Textbook (Engel J. Jr. and Pedley T. A., eds), Raven, New York, in press.

    Google Scholar 

  • Murray K. D., Roper S. N., Eskin T. A., King M. A., Montesinos S. P., and Isackson P. J. (1994) Altered mRNA expression for brain-derived neurotrophic factor and calcium/calmodulin-dependent protein kinase type II in hippocampi from patients with intractable temporal lobe epilepsy.Epilepsia 35, Suppl. 8. 65.

    Google Scholar 

  • Persson H. (1993) Neurotrophin production in the brain.Semin. Neurosci. 5, 227–237.

    Article  CAS  Google Scholar 

  • Phillips H. S., Hains J. M., Armanini M., Laramee G. R., Johnson S. A. and Winslow J. W. (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease.Neuron 7, 695–702.

    Article  PubMed  CAS  Google Scholar 

  • Rocamora N., Palacios J. M. and Mengod G. (1992) Limbic seizures induce a differential regulation of the expression of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, in the rat hippocampus.Mol. Brain Res. 13, 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Rocamora N., Massieu L., Boddeke H. W. G. M., Mengod G. and Palacios J. M. (1993) Neuronal death and neurotrophin gene expression: long-lasting stimulation of neurotrophin-3 messenger RNA in the degenerating CA1 and CA4 pyramidal cell layers.Neuroscience 53, 905–908.

    Article  PubMed  CAS  Google Scholar 

  • Schecterson L. C. and Bothwell M. (1992) Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons.Neuron 9, 449–463.

    Article  PubMed  CAS  Google Scholar 

  • Takedo A., Onodera H., Yamasaki Y., Furukawa K., Kogure K., Obinata M., and Shibahara S. (1992) Decreased expression of neurotrophin-3 mRNA in the rat hippocampus following transient forebrain ischemia.Brain Res. 569, 177–180.

    Article  Google Scholar 

  • Takedo A., Onodera H., Sugimoto A., Kogure K., Obinata M. and Shibahara S. (1993) Coordinated expression of messenger RNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischemia.Neuroscience 55, 23–31.

    Article  Google Scholar 

  • Tauck D. and Nadler J. V. (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats.J. Neurosci. 5, 1016–1022.

    PubMed  CAS  Google Scholar 

  • Wetzel D. M., Bohn M. C., and Hamill R. W. (1994) Postmortem stability of mRNA for glucocorticoid and mineralocorticoid receptor in rodent brain.Brain Res. 649, 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Whittemore S. R., Friedman P. L., Larhammar D., Persson H., Gonsalez-Carvajal M., and Holets V. R. (1988) Rat B-nerve growth factor sequence and site of synthesis in the adult hippocampus.J. Neurosci. Res. 20, 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Zafra F., Castren D., Thoenen H., and Lindholm D. (1991) Interplay between glutamate and gamma-amino butyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons.Proc. Natl. Acad. Sci. USA 88, 10,037–10,041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathern, G.W., Babb, T.L., Micevych, P.E. et al. Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus. Molecular and Chemical Neuropathology 30, 53–76 (1997). https://doi.org/10.1007/BF02815150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815150

Index Entries

Navigation