Skip to main content

Advertisement

Log in

Tree Species Effects on Soil CO2 and CH4 Fluxes in a Mixed Temperate Forest

  • Original Article
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Temperate forest soils are net sources of carbon dioxide (CO2) and net sinks for methane (CH4), the two greenhouse gases most responsible for contemporary global climate change. Both soil carbon fluxes are sensitive to their local tree communities due to the direct effects of tree traits as well as indirect effects of associated soil properties. We asked how tree species identity and diversity predicts the flux of CO2 and CH4 from soils, how the two net fluxes are related, and what tree and soil characteristics predict their magnitudes. In a mixed temperate forest in central Massachusetts, we established 49 plots containing either a single tree species or a combination of those species and measured growing season soil CO2 and CH4 fluxes for two years. We found generally greater soil CO2 and CH4 fluxes associated with deciduous tree species. CH4 uptake rates were more sensitive to tree species than were CO2 fluxes. Tree species mixtures lead to predictable intermediate fluxes of CO2, but mixtures resulted in lower than predicted CH4 uptake. Soil CO2 emission and CH4 uptake were both positively related to total litter inputs. Soil CO2 emission was additionally associated with warmer temperatures and a lower ratio of soil carbon to nitrogen; in contrast, CH4 uptake was associated with lower soil moisture and a shallower organic horizon. Thus, tree species community composition may prove useful for predicting soil carbon fluxes, but much remains to be discovered about the mechanisms linking tree species to associated microbial and biogeochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

All data associated with this manuscript as well as the statistical code can be found at Jevon, Fiona (2023), “CO2 and CH4 fluxes at Harvard Forest”, Mendeley Data, V2, https://doi.org/10.17632/z6wybrtpyk.2.

References

  • Aber JD, Melillo JM, McClaugherty CA. 1990. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany Journal Canadien De Botanique 68:2201–2208.

    Google Scholar 

  • Abramoff RZ, Finzi AC. 2015. Are above- and below-ground phenology in sync? The New Phytologist 205:1054–1061.

    Article  PubMed  Google Scholar 

  • Adamsen AP, King GM. 1993. Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen. Applied and Environmental Microbiology 59:485–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akburak S, Makineci E. 2013. Temporal changes of soil respiration under different tree species. Environmental Monitoring and Assessment 185:3349–3358.

    Article  CAS  PubMed  Google Scholar 

  • Amaral JA, Knowles R. 1998. Inhibition of Methane Consumption in Forest Soils by Monoterpenes. Journal of Chemical Ecology 24:723–734.

    Article  CAS  Google Scholar 

  • Amaral JA, Ekins A, Richards SR, Knowles R. 1998. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture. Applied and Environmental Microbiology 64:520–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball BC, Smith KA, Klemedtsson L, Brumme R, Sitaula BK, Hansen S, Priemé A, MacDonald J, Horgan GW. 1997. The influence of soil gas transport properties on methane oxidation in a selection of northern European soils. Journal of Geophysical Research 102:23309–23317.

    Article  CAS  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67:1–48.

    Article  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST. 2004. A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology 10:1756–1766.

    Article  Google Scholar 

  • Boose E. 2022. Fisher Meteorological Station at Harvard Forest since 2001. Harvard Forest Data Archive: HF001 (v.27). Environmental Data Initiative. https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF001. Last accessed 08/12/2022.

  • Borken W, Beese F. 2006. Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce. European Journal of Soil Science 57:617–625.

    Article  CAS  Google Scholar 

  • Borken W, Xu Y-J, Beese F. 2003. Conversion of hardwood forests to spruce and pine plantations strongly reduced soil methane sink in Germany. Global Change Biology 9:956–966.

    Article  Google Scholar 

  • Bowden RD, Newkirk KM, Rullo GM. 1998. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biology & Biochemistry 30:1591–1597.

    Article  CAS  Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA. 2016. Understanding the dominant controls on litter decomposition. Cornwell W, editor. The Journal of Ecology 104:229–238.

    Article  CAS  Google Scholar 

  • Brassard BW, Chen HYH, Cavard X, Laganière J, Reich PB, Bergeron Y, Paré D, Yuan Z. 2013. Tree species diversity increases fine root productivity through increased soil volume filling. Chen H, editor. The Journal of Ecology 101:210–219.

    Article  Google Scholar 

  • Brumme R, Borken W. 1999. Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem. Global Biogeochemical Cycles 13:493–501.

    Article  CAS  Google Scholar 

  • Capellesso ES, Scrovonski KL, Zanin EM, Hepp LU, Bayer C, Sausen TL. 2016. Effects of forest structure on litter production, soil chemical composition and litter-soil interactions. Acta Botanica Brasilica 30:329–335.

    Article  Google Scholar 

  • Castro MS, Melillo JM, Steudler PA, Chapman JW. 1994. Soil moisture as a predictor of methane uptake by temperate forest soils. Canadian Journal of Forest Research Journal Canadien De La Recherche Forestiere 24:1805–1810. https://doi.org/10.1139/x94-233.

    Article  CAS  Google Scholar 

  • Cesarz S, Ruess L, Jacob M, Jacob A, Schaefer M, Scheu S. 2013. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biology & Biochemistry 62:36–45.

    Article  CAS  Google Scholar 

  • Chen G-S, Yang Y-S, Guo J-F, Xie J-S, Yang Z-J. 2011. Relationships between carbon allocation and partitioning of soil respiration across world mature forests. Plant Ecology 212:195–206.

    Article  Google Scholar 

  • Creed RP, Cherry RP, Pflaum JR, Wood CJ. 2009. Dominant species can produce a negative relationship between species diversity and ecosystem function. Oikos 118:723–732.

    Article  Google Scholar 

  • Davidson EA, Belk E, Boone RD. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4:217–227. https://doi.org/10.1046/j.1365-2486.1998.00128.x.

    Article  Google Scholar 

  • Davidson EA, Savage K, Verchot LV, Navarro R. 2002. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology 113:21–37. https://doi.org/10.1016/s0168-1923(02)00100-4.

    Article  Google Scholar 

  • Dawud SM, Raulund-Rasmussen K, Domisch T, Finér L, Jaroszewicz B, Vesterdal L. 2016. Is Tree Species Diversity or Species Identity the More Important Driver of Soil Carbon Stocks, C/N Ratio, and pH? Ecosystems 19:645–660.

    Article  CAS  Google Scholar 

  • Degelmann DM, Borken W, Kolb S. 2009. Methane oxidation kinetics differ in European beech and Norway spruce soils. European Journal of Soil Science 60:499–506.

    Article  CAS  Google Scholar 

  • Eissfeller V, Langenbruch C, Jacob A, Maraun M, Scheu S. 2013. Tree identity surpasses tree diversity in affecting the community structure of oribatid mites (Oribatida) of deciduous temperate forests. Soil Biology & Biochemistry 63:154–162.

    Article  CAS  Google Scholar 

  • Fender A-C, Gansert D, Jungkunst HF, Fiedler S, Beyer F, Schützenmeister K, Thiele B, Valtanen K, Polle A, Leuschner C. 2013. Root-induced tree species effects on the source/sink strength for greenhouse gases (CH4, N2O and CO2) of a temperate deciduous forest soil. Soil Biology & Biochemistry 57:587–597.

    Article  CAS  Google Scholar 

  • Finzi AC, Canham CD, van Breemen N. 1998a. Canopy Tree-Soil Interactions within Temperate Forests: Species Effects on pH and Cations. Ecological Applications: A Publication of the Ecological Society of America 8:447–454.

    Google Scholar 

  • Finzi AC, Van Breemen N, Canham CD. 1998b. Canopy Tree-Soil Interactions within Temperate Forests: Species Effects on Soil Carbon and Nitrogen. Ecological Applications: A Publication of the Ecological Society of America 8:440–446.

    Google Scholar 

  • Finzi AC, Raymer PCL, Giasson M-A, Orwig DA. 2014. Net primary production and soil respiration in New England hemlock forests affected by the hemlock woolly adelgid. Ecosphere. https://doi.org/10.1890/ES14-00102.1.

    Article  Google Scholar 

  • Gartner TB, Cardon ZG. 2004. Decomposition Dynamics in Mixed-Species Leaf Litter. Oikos 104:230–246.

    Article  Google Scholar 

  • Gelman A. 2008. Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 27:2865–2873.

    Article  PubMed  Google Scholar 

  • Giasson M-A, Ellison AM, Bowden RD, Crill PM, Davidson EA, Drake JE, Frey SD, Hadley JL, Lavine M, Melillo JM, Munger JW, Nadelhoffer KJ, Nicoll L, Ollinger SV, Savage KE, Steudler PA, Tang J, Varner RK, Wofsy SC, Foster DR, Finzi AC. 2013. Soil respiration in a northeastern US temperate forest: a 22-year synthesis. Ecosphere. https://doi.org/10.1890/ES13.00183.1.

    Article  Google Scholar 

  • Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiological Reviews 60:439–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB. 2010. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513.

    Article  PubMed  Google Scholar 

  • Hoorens B, Stroetenga M, Aerts R. 2010. Litter Mixture Interactions at the Level of Plant Functional Types are Additive. Ecosystems 13:90–98.

    Article  Google Scholar 

  • Huang N, Wang L, Song X-P, Black TA, Jassal RS, Myneni RB, Wu C, Wang L, Song W, Ji D, Yu S, Niu Z. 2020. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Science Advances. https://doi.org/10.1126/sciadv.abb8508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hursh A, Ballantyne A, Cooper L, Maneta M, Kimball J, Watts J. 2017. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biology 23:2090–2103.

    Article  PubMed  Google Scholar 

  • Ishizuka S, Sakata T, Ishizuka K. 2000. Methane oxidation in Japanese forest soils. Soil Biology & Biochemistry 32:769–777.

    Article  CAS  Google Scholar 

  • Jang I, Lee S, Zoh K-D, Kang H. 2011. Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biology & Biochemistry 43:620–627.

    Article  CAS  Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grunwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze E-D, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology 7:269–278. https://doi.org/10.1046/j.1365-2486.2001.00412.x.

    Article  Google Scholar 

  • Jenkins J, Motzkin G, Ward K. 2008. Harvard Forest Flora: An Inventory, Analysis and Ecological History. Harvard Forest 28. https://harvardforest1.fas.harvard.edu/sites/harvardforest.fas.harvard.edu/files/publications/pdfs/HF_flora.pdf.

  • Jurasinski G, Koebsch F, Anke Guenther A, Beetz S. 2014. flux: Flux rate calculation from dynamic closed chamber measurements. https://CRAN.R-project.org/package=flux

  • King GM. 1994. Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Applied and Environmental Microbiology 60:3220–3227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G. 2013. Three decades of global methane sources and sinks. Nature Geoscience 6:813.

    Article  CAS  Google Scholar 

  • Laganière J, Paré D, Bergeron Y, Chen HYH. 2012. The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biology & Biochemistry 53:18–27.

    Article  Google Scholar 

  • Lang AK, Jevon FV, Ayres MP, Matthes JH. 2020. Higher soil respiration rate beneath arbuscular mycorrhizal trees in a northern hardwood forest is driven by associated soil properties. Ecosystems. https://doi.org/10.1007/s10021-019-00466-7.

    Article  Google Scholar 

  • Langenbruch C, Helfrich M, Flessa H. 2012. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil 352:389–403.

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P. 2001. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology 37:25–50.

    Article  Google Scholar 

  • Li W, Bai Z, Jin C, Zhang X, Guan D, Wang A, Yuan F, Wu J. 2017. The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest. The Science of the Total Environment 590–591:242–248.

    Article  PubMed  Google Scholar 

  • Lloyd J, Taylor JA. 1994. On the Temperature Dependence of Soil Respiration. Functional Ecology 8:315–323.

    Article  Google Scholar 

  • Lüdecke D. 2021. sjPlot: Data Visualization for Statistics in Social Science. https://CRAN.R-project.org/package=sjPlot

  • Maestre FT, Cortina J. 2003. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology: A Section of Agriculture, Ecosystems & Environment 23:199–209.

    Article  Google Scholar 

  • Maurer D, Kolb S, Haumaier L, Borken W. 2008. Inhibition of atmospheric methane oxidation by monoterpenes in Norway spruce and European beech soils. Soil Biology & Biochemistry 40:3014–3020.

    Article  CAS  Google Scholar 

  • McCormack LM, Adams TS, Smithwick EAH, Eissenstat DM. 2012. Predicting fine root lifespan from plant functional traits in temperate trees. The New Phytologist 195:823–831.

    Article  Google Scholar 

  • McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM. 2014. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95:2224–2235.

    Article  PubMed  Google Scholar 

  • Megonigal JP, Guenther AB. 2008. Methane emissions from upland forest soils and vegetation. Tree Physiology 28:491–498.

    Article  CAS  PubMed  Google Scholar 

  • Menyailo OV, Hungate BA. 2003. Interactive effects of tree species and soil moisture on methane consumption. Soil Biology & Biochemistry 35:625–628.

    Article  CAS  Google Scholar 

  • Metcalfe DB, Fisher RA, Wardle DA. 2011. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8:2047–2061.

    Article  Google Scholar 

  • Munger W, Wofsy S. 2022. Biomass Inventories at Harvard Forest EMS Tower since 1993 ver 37. https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hfr&identifier=69. Last accessed 18/05/2022.

  • Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK. 2013. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology 15:2395–2417.

    Article  CAS  PubMed  Google Scholar 

  • Ni X, Groffman PM. 2018. Declines in methane uptake in forest soils. Proceedings of the National Academy of Sciences of the United States of America 115:8587–8590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuckolls AE, Wurzburger N, Ford CR, Hendrick RL, Vose JM, Kloeppel BD. 2009. Hemlock Declines Rapidly with Hemlock Woolly Adelgid Infestation: Impacts on the Carbon Cycle of Southern Appalachian Forests. Ecosystems 12:179–190.

    Article  CAS  Google Scholar 

  • Pancotto VA, van Bodegom PM, van Hal J, van Logtestijn RSP, Blokker P, Toet S, Aerts R. 2010. N deposition and elevated CO2 on methane emissions: Differential responses of indirect effects compared to direct effects through litter chemistry feedbacks. Journal of Geophysical Research. https://doi.org/10.1029/2009JG001099.

    Article  Google Scholar 

  • Paradiso E, Jevon F, Matthes J. 2019. Fine root respiration is more strongly correlated with root traits than tree species identity. Ecosphere. https://doi.org/10.1002/ecs2.2944.

    Article  Google Scholar 

  • Prescott CE, Vesterdal L. 2013. Tree species effects on soils in temperate and boreal forests: Emerging themes and research needs. Forest Ecology and Management 309:1–3.

    Article  Google Scholar 

  • Raich JW, Potter CS. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles 9:23–36. https://doi.org/10.1029/94gb02723.

    Article  CAS  Google Scholar 

  • Reay DS, Nedwell DB, McNamara N, Ineson P. 2005. Effect of tree species on methane and ammonium oxidation capacity in forest soils. Soil Biology & Biochemistry 37:719–730.

    Article  CAS  Google Scholar 

  • Savage KE, Davidson EA. 2003. A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution. Journal of Experimental Botany 54:891–899.

    Article  CAS  PubMed  Google Scholar 

  • Savage K, Davidson EA, Tang J. 2013. Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Global Change Biology 19:1151–1159.

    Article  CAS  PubMed  Google Scholar 

  • Scheibe A, Steffens C, Seven J, Jacob A, Hertel D, Leuschner C, Gleixner G. 2015. Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology & Biochemistry 81:219–227.

    Article  CAS  Google Scholar 

  • Scherer-Lorenzen M, Luis Bonilla J, Potvin C. 2007. Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116:2108–2124.

    Article  Google Scholar 

  • Schleuß P-M, Heitkamp F, Leuschner C, Fender A-C, Jungkunst HF. 2014. Higher subsoil carbon storage in species-rich than species-poor temperate forests. Environmental Research Letters: ERL [web Site] 9:014007.

    Article  Google Scholar 

  • Schwarz B, Dietrich C, Cesarz S, Scherer-Lorenzen M, Auge H, Schulz E, Eisenhauer N. 2015. Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. European Journal of Soil Biology 67:17–26.

    Article  Google Scholar 

  • Shukla PN, Pandey KD, Mishra VK. 2013. Environmental Determinants of Soil Methane Oxidation and Methanotrophs. Critical Reviews in Environmental Science and Technology 43:1945–2011.

    Article  CAS  Google Scholar 

  • Subke J-A, Inglima I, Francesca Cotrufo M. 2006. Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review. Global Change Biology 12:921–943.

    Article  Google Scholar 

  • Subke J-A, Moody CS, Hill TC, Voke N, Toet S, Ineson P, Teh YA. 2018. Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil. Soil Biology & Biochemistry 116:323–332.

    Article  CAS  Google Scholar 

  • Talbot JM, Finzi AC. 2008. Differential effects of sugar maple, red oak, and hemlock tannins on carbon and nitrogen cycling in temperate forest soils. Oecologia 155:583–592.

    Article  PubMed  Google Scholar 

  • Tokida T, Adachi M, Cheng W, Nakajima Y, Fumoto T, Matsushima M, Nakamura H, Okada M, Sameshima R, Hasegawa T. 2011. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Global Change Biology 17:3327–3337.

    Article  Google Scholar 

  • Ullah S, Moore TR. 2011. Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada. Journal of Geophysical Research. https://doi.org/10.1029/2010JG001525.

    Article  Google Scholar 

  • Ullah S, Frasier R, King L, Picotte-Anderson N, Moore TR. 2008. Potential fluxes of N2O and CH4 from soils of three forest types in Eastern Canada. Soil Biology & Biochemistry 40:986–994.

    Article  CAS  Google Scholar 

  • Vesterdal L, Elberling B, Christiansen JR, Callesen I, Schmidt IK. 2012. Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management 264:185–196.

    Article  Google Scholar 

  • Waldo NB, Hunt BK, Fadely EC, Moran JJ, Neumann RB. 2019. Plant root exudates increase methane emissions through direct and indirect pathways. Biogeochemistry 145:213–234.

    Article  CAS  Google Scholar 

  • Walkiewicz A, Rafalska A, Bulak P, Bieganowski A, Osborne B. 2021. How can litter modify the fluxes of CO2 and CH4 from forest soils? A mini-review. Forests, Trees and Livelihoods 12:1276.

    Google Scholar 

  • Wang X, Wang C. 2018. Mycorrhizal associations differentiate soil respiration in five temperate monocultures in Northeast China. Forest Ecology and Management 430:78–85.

    Article  Google Scholar 

  • Warner DL, Vargas R, Seyfferth A, Inamdar S. 2018. Transitional slopes act as hotspots of both soil CO2 emission and CH4 uptake in a temperate forest landscape. Biogeochemistry 138:121–135.

    Article  CAS  Google Scholar 

  • Warner DL, Bond-Lamberty B, Jian J, Stell E, Vargas R. 2019. Spatial predictions and associated uncertainty of annual soil respiration at the global scale. Global Biogeochemical Cycles 33:1733–1745.

    Article  CAS  Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM. 2006. Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs 76:381–397.

    Article  Google Scholar 

  • Wu J, Lu M, Feng J, Zhang D, Chen Q, Li Q, Long C, Zhang Q, Cheng X. 2019. Soil net methane uptake rates in response to short-term litter input change in a coniferous forest ecosystem of central China. Agricultural and Forest Meteorology 271:307–315.

    Article  Google Scholar 

  • Yavitt JB, Downey DM, Lang GE, Sexston AJ. 1990. Methane consumption in two temperate forest soils. Biogeochemistry 9:39–52.

    Article  CAS  Google Scholar 

  • Zhou G, Zhou X, Liu R, Du Z, Zhou L, Li S, Liu H, Shao J, Wang J, Nie Y, Gao J, Wang M, Zhang M, Wang X, Bai SH. 2020. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration. Functional Ecology 34:2634–2643.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Audrey Barker Plotkin for her assistance in locating the study plots and Mark Bradford for helpful conversations about the project. Figure 1 was created with BioRender.com. Support for Jaclyn Matthes came from the National Science Foundation (Award Number 1638406). Additional support was provided by NSF awards 18-32210 (Harvard Forest Long-Term Ecological Research) and 1637685 (Hubbard Brook Long-Term Ecological Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona V. Jevon.

Additional information

Author Contributions

FVJ conceived the study. FVJ, AKL, MPA and JHM designed the study. FVJ and AKL carried out data collection. FVJ, JG, and JHM performed the data analysis. FVJ and JG drafted the manuscript. All authors contributed to the final writing of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 501 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jevon, F.V., Gewirtzman, J., Lang, A.K. et al. Tree Species Effects on Soil CO2 and CH4 Fluxes in a Mixed Temperate Forest. Ecosystems 26, 1587–1602 (2023). https://doi.org/10.1007/s10021-023-00852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00852-2

Keywords

Navigation