Skip to main content
Log in

Fire History and Long-Term Carbon Accumulation in Hemi-boreal Peatlands

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Fire can play an important role in peatlands by modifying plant communities and carbon (C) stocks. However, baseline disturbance data on peatland fire history are lacking in the hemi-boreal region. We sampled 29 peatlands in northern Michigan, Wisconsin, and Minnesota and used peat core records, radiocarbon dating, and infrared spectrometry to identify and date past fire events in 4 major hemi-boreal peatland ecotypes including open poor fens, treed poor fens, forested poor fens, and forested rich fens. In this region all types of poor fens had widely variable fire frequencies between sites. The poor fens experienced 2.1 fires per thousand years, or once every 476 years, on average, while the rich fens experienced almost no fire. Overall C stocks ranged from 10.1 to 263.3 kg C m−2 with a mean of 94.6 and median of 90.5 kg C m−2. The long-term apparent rate of carbon accumulation (LARCA) varied between 10–45 g m−2 y−1 with an average of 28 g m−2 y−1. We found a significant negative relationship between fire frequency and LARCA. Our research indicates that fire frequency is not consistent across peatland types and increases in fire frequency will likely diminish peat C stocks. These findings provide a historical context for management decisions concerning wildland fires and their consequences for ecosystem C storage in hemi-boreal peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

Additional data are available in Michigan Technological University’s Digital Commons, including location, depth, bulk density, organic matter, carbon, char content values and FTIR spectra for each sample within each core. Radiocarbon data are available. Also included are code and configuration files that are used following the methods of our previous publication (Uhelski and others 2022b) to produce our char content estimates. The dataset doi is: http://doi.org/10.37099/mtu.dc.all-datasets/39

References

  • Apfelbaum SI, Haney A, Wang F, Burris J, Carlson J. 2017. Old-Growth Southern Boreal Forest Stability and Response to a Stand-Replacing Wildfire. Nat Areas J 37:474–488.

    Article  Google Scholar 

  • Ashley WS, Haberlie AM, Gensini VA. 2020. Reduced frequency and size of late-twenty-first-century snowstorms over North America. Nat Clim Chang 10:539–544. https://doi.org/10.1038/s41558-020-0774-4.

    Article  CAS  Google Scholar 

  • Baldock JA, Masiello CA, Gélinas Y, Hedges JI. 2004. Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39–64.

    Article  CAS  Google Scholar 

  • Baltzer JL, Day NJ, Walker XJ, Greene D, Mack MC, Alexander HD, Arseneault D, Barnes J, Bergeron Y, Boucher Y, Bourgeau-Chavez L, Brown CD, Carrière S, Howard BK, Gauthier S, Parisien M-A, Reid KA, Rogers BM, Roland C, Sirois L, Stehn S, Thompson DK, Turetsky MR, Veraverbeke S, Whitman E, Yang J, Johnstone JF. 2021. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2024872118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benscoter BW, Vitt DH. 2008. Spatial patterns and temporal trajectories of the bog ground layer along a post-fire chronosequence. Ecosystems 11:1054–1064.

    Article  Google Scholar 

  • Benscoter BW, Greenacre D, Turetsky MR. 2015. Wildfire as a key determinant of peatland microtopography. Can J for Res 45:1132–1136.

    Article  Google Scholar 

  • Bhatti JS, Bauer IE. 2002. Comparing loss-on-ignition with dry combustion as a method for determining carbon content in upland and lowland forest ecosystems. Commun Soil Sci Plant Anal 33:3419–3430.

    Article  CAS  Google Scholar 

  • Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST. 2007. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450:89–92.

    Article  CAS  PubMed  Google Scholar 

  • Bourgeau-Chavez LL, Endres S, Powell R, Battaglia MJ, Benscoter B, Turetsky M, Kasischke ES, Banda E. 2017. Mapping boreal peatland ecosystem types from multitemporal radar and optical satellite imagery. Can J for Res 47:545–559.

    Article  CAS  Google Scholar 

  • Bourgeau-Chavez LL, Grelik SL, Billmire M, Jenkins LK, Kasischke ES, Turetsky MR. 2020. Assessing Boreal Peat Fire Severity and Vulnerability of Peatlands to Early Season Wildland Fire. Front for Glob Chang 3:1–13.

    Article  Google Scholar 

  • Bronk Ramsey C. 2008. Deposition models for chronological records. Quaternary Science Reviews. 27(1–2):42–60.

    Google Scholar 

  • Bronk Ramsey C. 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–60. https://www.cambridge.org/core/journals/radiocarbon/article/bayesian-analysis-of-radiocarbon-dates/F622173B70F9C1597F2738DEFC597114. Last accessed 27/07/2021

  • Bronk Ramsey C. 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon. 51(3):1023–1045.

    Article  Google Scholar 

  • Burns RM, Honkala BH. 1990. Silvics of North America. Volume 1: Washington, DC: U.S. Department of Agriculture, Forest Service https://www.srs.fs.usda.gov/pubs/misc/ag_654/table_of_contents.htm

  • Chapman SJ, Campbell CD, Fraser AR, Puri G. 2001. FTIR spectroscopy of peat in and bordering scots pine woodland: Relationship with chemical and biological properties. Soil Biol Biochem 33:1193–1200.

    Article  CAS  Google Scholar 

  • Clymo RS, Turunen J, Tolonen K. 1998. Carbon Accumulation in Peatland. Oikos 81:368–388.

    Article  Google Scholar 

  • De Maesschalck R, Jouan-Rimbaud D, Massart DL. 2000. The Mahalanobis distance. Chemom Intell Lab Syst 50:1–18.

    Article  Google Scholar 

  • Dieleman CM, Rogers BM, Potter S, Veraverbeke S, Johnstone JF, Laflamme J, Solvik K, Walker XJ, Mack MC, Turetsky MR. 2020. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob Chang Biol 26:6062–6079. https://doi.org/10.1111/gcb.15158.

    Article  PubMed  Google Scholar 

  • Drobyshev I, Goebel PC, Hix DM, Corace RG, Semko-Duncan ME. 2008. Pre- and post-European settlement fire history of red pine dominated forest ecosystems of Seney National Wildlife Refuge, Upper Michigan. Can J for Res 38:2497–2514.

    Article  Google Scholar 

  • Dudek M, Kabała C, Łabaz B, Mituła P, Bednik M, Medyńska-Juraszek A. 2021. Mid-infrared spectroscopy supports identification of the origin of organic matter in soils. Land 10:1–11.

    Article  Google Scholar 

  • Fenton NJ, Bergeron Y. 2008. Does time or habitat make old-growth forests species rich? Bryophyte richness in boreal Picea mariana forests. Biol Conserv 141:1389–99. http://linkinghub.elsevier.com/retrieve/pii/S0006320708001158. Last accessed 16/09/2016

  • Fujiwara A, Hirawake T, Suzuki K, Imai I, Saitoh SI. 2014. Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean. Biogeosciences 11:1705–1716.

    Article  Google Scholar 

  • Giorgi F. 2006. Climate change hot-spots. Geophys Res Lett 33:1–4.

    Article  Google Scholar 

  • Goldstein A, Turner WR, Spawn SA, Anderson-teixeira KJ, Cook-patton S, Fargione J, Gibbs HK, Griscom B, Hewson JH, Howard JF, Ledezma JC, Page S, Koh LP, Rockström J, Sanderman J, Hole DG. 2020. Protecting irrecoverable carbon in Earth’s ecosystems. Nat Clim Chang 10:287–295. https://doi.org/10.1038/s41558-020-0738-8.

    Article  CAS  Google Scholar 

  • Harris AG, McMurray SC, Uhlig PWC, Jeglum JK, Foster RF, Racey GD. 1996. Field guide to the wetland ecosystem classification for northwestern Ontario. Thunder Bay, Ontario: Ontario Ministry of Natural Resources, Northwest Science and Technology.

    Google Scholar 

  • Harris LI, Richardson K, Bona KA, Davidson SJ, Finkelstein SA, Garneau M, McLaughlin J, Nwaishi F, Olefeldt D, Packalen M, Roulet NT, Southee FM, Strack M, Webster KL, Wilkinson SL, Ray JC. 2021. The essential carbon service provided by northern peatlands. Front Ecol Environ 20:222–230.

    Article  Google Scholar 

  • Hayhoe K, VanDorn J, Croley T, Schlegal N, Wuebbles D. 2010. Regional climate change projections for Chicago and the US Great Lakes. J Great Lakes Res 36:7–21.

    Article  Google Scholar 

  • Hungerford R, Frandsen WH, Ryan KC. 1995. Ignition and Burning Characteristics of Organic Soils. Proc 19th Tall Timbers Fire Ecol Conf Fire Wetl a Manag Perspect:79–91.

  • Johnson EA. 1992. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Johnstone JF, Hollingsworth TN, Chapin FS, Mack MC. 2010. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Chang Biol 16:1281–1295.

    Article  Google Scholar 

  • Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennagel T, Turner MG. 2016. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–378.

    Article  Google Scholar 

  • Jules AN, Asselin H, Bergeron Y, Ali AA. 2018. Are marginal balsam fir and eastern white cedar stands relics from once more extensive populations in north-eastern North America? Holocene 28:1672–1679.

    Article  Google Scholar 

  • Kasin I, Blanck YL, Storaunet KO, Rolstad J, Ohlson M. 2013. The charcoal record in peat and mineral soil across a boreal landscape and possible linkages to climate change and recent fire history. Holocene 23:1052–1065.

    Article  Google Scholar 

  • Kasischke ES, Turetsky MR. 2006. Recent changes in the fire regime across the North American boreal region - Spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett. https://doi.org/10.1029/2006GL025677.

    Article  Google Scholar 

  • Kolka R, Bridgham SD, Ping CL. 2016. Soils of peatlands: histosols and gelisols. In: Vepraskas MJ, Craft CL, Eds. Wetlands soils: genesis, hydrology, landscapes and classification, . Boca Raton, FL: Press/Lewis Publishing. pp 277–309.

    Google Scholar 

  • Kolka R, Trettin C, Tang W, Krauss K, Bansal S, Drexler J, Wickland K, Chimner R, Hogan D, Pindilli E, Benscoter B, Tangen B, Kane E, Bridgham S, Richardson C. 2018. Chapter 13: Terrestrial Wetlands. Second State of the Carbon Cycle Report. (Cavallaro N, Shrestha G, Birdsey R, Mayes MA, Najjar R, Reed S, Romero-Lankao P, Zhu Z, editors.). Washington, DC https://doi.org/10.7930/SOCCR2.2018.Ch13.

  • Kost MA, Albert DA, Cohen JG, Slaughter BS, Schillo RK, Weber CR, Chapman K.A. 2007. Natural Communities of Michigan: Classification and Description. Michigan Nat Featur Invent Rep No 2007-21. https://mnfi.anr.msu.edu/communities/community.cfm?id=10652. Last accessed 20/09/2016

  • Kudray G. 2019. Field Guide Hiawatha National Forest Ecological Classification System. CreateSpace Independent Publishing Platform. ISBN-13: 978-1981227716.

  • Kuhry P. 1994. The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. J Ecol 82:899–910.

    Article  Google Scholar 

  • Langor DW, Cameron EK, Macquarrie CJK, Mcbeath A, Mcclay A, Peter B, Pybus M, Ramsfield T, Ryall K, Scarr T, Yemshanov D, Demerchant I, Foottit R, Pohl GR. 2014. Non-native species in Canada’s boreal zone: diversity, impacts, and risk. Environ Rev 22:372–420.

    Article  Google Scholar 

  • Loisel J, Yu Z, Beilman DW, Camill P, Alm J, Amesbury MJ, Anderson D, Andersson S, Bochicchio C, Barber K, Belyea LR, Bunbury J, Chambers FM, Charman DJ, De Vleeschouwer F, Fiałkiewicz-Kozieł B, Finkelstein SA, Gałka M, Garneau M, Hammarlund D, Hinchcliffe W, Holmquist J, Hughes P, Jones MC, Klein ES, Kokfelt U, Korhola A, Kuhry P, Lamarre A, Lamentowicz M, Large D, Lavoie M, MacDonald G, Magnan G, Mäkilä M, Mallon G, Mathijssen P, Mauquoy D, McCarroll J, Moore TR, Nichols J, O’Reilly B, Oksanen P, Packalen M, Peteet D, Richard PJH, Robinson S, Ronkainen T, Rundgren M, Sannel ABK, Tarnocai C, Thom T, Tuittila ES, Turetsky M, Väliranta M, van der Linden M, van Geel B, van Bellen S, Vitt D, Zhao Y, Zhou W. 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24:1028–1042.

    Article  Google Scholar 

  • Loisel J, Gallego-Sala AV, Amesbury MJ, Magnan G, Anshari G, Beilman DW, Benavides JC, Blewett J, Camill P, Charman DJ, Chawchai S, Hedgpeth A, Kleinen T, Korhola A, Large D, Mansilla CA, Müller J, van Bellen S, West JB, Yu Z, Bubier JL, Garneau M, Moore T, Sannel ABK, Page S, Väliranta M, Bechtold M, Brovkin V, Cole LES, Chanton JP, Christensen TR, Davies MA, De Vleeschouwer F, Finkelstein SA, Frolking S, Gałka M, Gandois L, Girkin N, Harris LI, Heinemeyer A, Hoyt AM, Jones MC, Joos F, Juutinen S, Kaiser K, Lacourse T, Lamentowicz M, Larmola T, Leifeld J, Lohila A, Milner AM, Minkkinen K, Moss P, Naafs BDA, Nichols J, O’Donnell J, Payne R, Philben M, Piilo S, Quillet A, Ratnayake AS, Roland TP, Sjögersten S, Sonnentag O, Swindles GT, Swinnen W, Talbot J, Treat C, Valach AC, Wu J. 2021. Expert assessment of future vulnerability of the global peatland carbon sink. Nat Clim Chang 11:70–77.

    Article  Google Scholar 

  • Marcisz K, Tinner W, Colombaroli D, Kołaczek P, Słowiński M, Fiałkiewicz-Kozieł B, Łokas E, Lamentowicz M. 2015. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quat Sci Rev 112:138–152.

    Article  Google Scholar 

  • Markgraf V, Huber UM. 2010. Late and postglacial vegetation and fire history in Southern Patagonia and Tierra del Fuego. Palaeogeogr Palaeoclimatol Palaeoecol 297:351–366. https://doi.org/10.1016/j.palaeo.2010.08.013.

    Article  Google Scholar 

  • Miyanishi K. 2001. Duff Consumption. In: Forest Fires. Elsevier. pp 437–75. https://linkinghub.elsevier.com/retrieve/pii/B9780123866608500155

  • Nichols JE, Peteet DM. 2019. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat Geosci 12:917–921. https://doi.org/10.1038/s41561-019-0454-z.

    Article  CAS  Google Scholar 

  • Pérez-Obiol R, García-Codron JC, Pèlachs A, Pérez-Haase A, Soriano JM. 2016. Landscape dynamics and fire activity since 6740 cal y BP in the Cantabrian region (La Molina peat bog, Puente Viesgo, Spain). Quat Sci Rev 135:65–78.

    Article  Google Scholar 

  • Pitkänen A, Turunen J, Tolonen K. 1999. The role of fire in the carbon dynamics of a mire, eastern Finland. Holocene 9:453–462.

    Article  Google Scholar 

  • Pitkänen A, Tolonen K, Jungner H. 2001. A basin-based approach to the long-term history of forest fires as determined from peat strata. Holocene 11:599–605.

    Article  Google Scholar 

  • Rayfield B, Paul V, Tremblay F, Fortin MJ, Hély C, Bergeron Y. 2021. Influence of habitat availability and fire disturbance on a northern range boundary. J Biogeogr 48:394–404.

    Article  Google Scholar 

  • Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R., Friedrich, M., Grootes, P., Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kromer, B., Manning, S., Muscheler, R., Palmer, J., Pearson, C., van der Plicht, J., Reimer, R., Richards, D., Scott, E., Southon, J., Turney, C., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., & Talamo, S. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62.

  • Robinson SD, Moore TR. 1999. Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, Northwestern Canada. Global Biogeochem Cycles 13:591–601.

    Article  CAS  Google Scholar 

  • Robinson SD, Moore TR. 2000. The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada. Arct Antarct Alp Res 32:155–166.

    Article  Google Scholar 

  • Rowe ER, D’Amato AW, Palik BJ, Almendinger JC. 2017. Early response of ground layer plant communities to wildfire and harvesting disturbance in forested peatland ecosystems in northern Minnesota, USA. For Ecol Manage 398:140–152. https://doi.org/10.1016/j.foreco.2017.05.012.

    Article  Google Scholar 

  • Rydin H, Jeglum JK. 2013. The Biology of Peatlands, 2nd edn. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Sazawa K, Wakimoto T, Fukushima M, Yustiawati Y, Syawal MS, Hata N, Taguchi S, Tanaka S, Tanaka D, Kuramitz H. 2018. Impact of Peat Fire on the Soil and Export of Dissolved Organic Carbon in Tropical Peat Soil, Central Kalimantan, Indonesia. ACS Earth Sp Chem 2:692–701.

    Article  CAS  Google Scholar 

  • Šeparović L, Alexandru A, Laprise R, Martynov A, Sushama L, Winger K, Tete K, Valin M. 2013. Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Climate Dynamics 41:3167–3201.

    Article  Google Scholar 

  • Sillasoo Ü, Väliranta M, Tuittila ES. 2011. Fire history and vegetation recovery in two raised bogs at the Baltic Sea. J Veg Sci 22:1084–1093.

    Article  Google Scholar 

  • Stuiver M, Polach HA. 1977. Discussion of Reporting of 14C Data. Radiocarbon 19:355–363.

    Article  Google Scholar 

  • Sutheimer CM, Meunier J, Hotchkiss SC, Rebitzke E, Radeloff VC. 2021. Historical fire regimes of North American hemiboreal peatlands. For Ecol Manage 498:119561. https://doi.org/10.1016/j.foreco.2021.119561.

    Article  Google Scholar 

  • Taylor AR, Chen HYH. 2011. Multiple successional pathways of boreal forest stands in central Canada. Ecography (cop) 34:208–219.

    Article  Google Scholar 

  • Tolonen M. 1985. Palaeoecological record of local fire history from a peat deposit in SW Finland. Ann Bot Fenn 22:15–29.

    Google Scholar 

  • Turetsky MR, St. Louis VL. 2006. Disturbance in Boreal Peatlands. In: Kelman-Wieder R, Vitt Dale H, Eds. Boreal Peatland Ecosystems, . Berlin: Springer. pp 359–379. https://doi.org/10.1007/978-3-540-31913-9_16.

    Chapter  Google Scholar 

  • Turetsky M, Wieder K, Halsey L, Vitt D. 2002. Current disturbance and the diminishing peatland carbon sink. Geophys Res Lett 29:21-1-21–4.

    Article  Google Scholar 

  • Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES. 2011. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci 4:27–31.

    Article  CAS  Google Scholar 

  • Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A. 2015. Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8:11–14. https://doi.org/10.1038/ngeo2325.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. 2013. Level III and IV Ecoregions of the Continental United States. https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states%0Ahttp://www.epa.gov/wed/pages/ecoregions/level_iii_iv.htm

  • Uhelski DM, Kane ES, Chimner RA. 2022a. Plant functional types drive Peat Quality differences. Wetlands 42:51. https://doi.org/10.1007/s13157-022-01572-4.

    Article  Google Scholar 

  • Uhelski DM, Kane ES, Chimner RA, Heckman KA, Miesel J, Xie L. 2022b. Pyogenic carbon content of Sphagnum peat soils estimated using diffuse reflectance FTIR spectrometry. Mires Peat 28:1–22.

    Google Scholar 

  • Vetrita Y, Cochrane MA. 2020. Fire frequency and related land-use and land-cover changes in Indonesia’s Peatlands. Remote Sens 12(1):5.

    Article  Google Scholar 

  • Vogel JS, Southon JR, Nelson DE. 1987. Catalyst and binder effects in the use of filamentous graphite for AMS. Nucl Inst Methods Phys Res B 29:50–56.

    Article  Google Scholar 

  • Walker XJ, Baltzer JL, Cumming SG, Day NJ, Ebert C, Goetz S, Johnstone JF, Potter S, Rogers BM, Schuur EAG, Turetsky MR, Mack MC. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572:520–523. https://doi.org/10.1038/s41586-019-1474-y.

    Article  CAS  PubMed  Google Scholar 

  • Walker XJ, Baltzer JL, Bourgeau-Chavez L, Day NJ, Dieleman CM, Johnstone JF, Kane ES, Rogers BM, Turetsky MR, Veraverbeke S, Mack MC. 2020a. Patterns of Ecosystem Structure and Wildfire Carbon Combustion Across Six Ecoregions of the North American Boreal Forest. Front for Glob Chang 3:1–12.

    Article  Google Scholar 

  • Walker XJ, Rogers BM, Veraverbeke S, Johnstone JF, Baltzer JL, Barrett K, Bourgeau-Chavez L, Day NJ, de Groot WJ, Dieleman CM, Goetz S, Hoy E, Jenkins LK, Kane ES, Parisien MA, Potter S, Schuur EAG, Turetsky M, Whitman E, Mack MC. 2020b. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat Clim Chang 10:1130–1136. https://doi.org/10.1038/s41558-020-00920-8.

    Article  Google Scholar 

  • Watmough S, Gilbert-Parkes S, Basiliko N, Lamit LJ, Lilleskov EA, Andersen R, del Aguila-Pasquel J, Artz RE, Benscoter BW, Borken W, Bragazza L, Brandt SM, Bräuer SL, Carson MA, Chen X, Chimner RA, Clarkson BR, Cobb AR, Enriquez AS, Farmer J, Grover SP, Harvey CF, Harris LI, Hazard C, Hoyt AM, Hribljan J, Jauhiainen J, Juutinen S, Kane ES, Knorr KH, Kolka R, Könönen M, Laine AM, Larmola T, Levasseur PA, McCalley CK, McLaughlin J, Moore TR, Mykytczuk N, Normand AE, Rich V, Robinson B, Rupp DL, Rutherford J, Schadt CW, Smith DS, Spiers G, Tedersoo L, Thu PQ, Trettin CC, Tuittila ES, Turetsky M, Urbanová Z, Varner RK, Waldrop MP, Wang M, Wang Z, Warren M, Wiedermann MM, Williams ST, Yavitt JB, Yu ZG, Zahn G. 2022. Variation in carbon and nitrogen concentrations among peatland categories at the global scale. PLoS ONE 17:1–15.

    Article  Google Scholar 

  • Wieder RK, Vitt DH, Eds. 2010. Boreal Peatland Ecosystems. Berlin: Springer.

    Google Scholar 

  • Wieder RK, Scott KD, Kamminga K, Vile MA, Vitt DH, Bone T, Xu B, Benscoter BW, Bhatti JS. 2009. Postfire carbon balance in boreal bogs of Alberta, Canada. Glob Chang Biol 15:63–81.

    Article  Google Scholar 

  • Wiken E, Nava FJ, Griffith G. 2011. North American Terrestrial Ecoregions—Level III. :1–149.

  • Young DM, Baird AJ, Gallego-Sala AV, Loisel J. 2021. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci Rep 11:1–12. https://doi.org/10.1038/s41598-021-88766-8.

    Article  CAS  Google Scholar 

  • Yu ZC. 2012. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085.

    Article  CAS  Google Scholar 

  • Zoppi U, Crye J, Song Q, Arjomand A. 2007. Performance evaluation of the new AMS system at Accium Biosciences. Radiocarbon 49:173–182.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support and funding received from the USDA Forest Service, Hiawatha National Forest, and in-kind support from the USDA Forest Service, Northern Research Station, as well as the USDA Forest Service Radiocarbon Collaborative. Funding from the National Institute of Food and Agriculture, USDA, McIntire-Stennis program, Michigan Technological University (MTU) graduate school, and the Ecosystem Science Center (MTU) also supported this study. We appreciate field and laboratory assistance from Andrew Robertson and Sam Kurkowski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic M. Uhelski.

Additional information

Author Contributions

DMU, ESK, and RAC conceived and designed the study and edited the paper. DMU performed the research, analyzed the data, and wrote the paper. KAH provided technical expertise, analyzed data, and edited the paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3872 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhelski, D.M., Kane, E.S., Heckman, K.A. et al. Fire History and Long-Term Carbon Accumulation in Hemi-boreal Peatlands. Ecosystems 26, 1573–1586 (2023). https://doi.org/10.1007/s10021-023-00851-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00851-3

Keywords

Navigation