Skip to main content

Advertisement

Log in

Trophic Niche Metrics Reveal Long-Term Shift in Florida Bay Food Webs

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Seagrass beds in Florida Bay are home to many ecologically and economically important species. Anthropogenic press perturbation via alterations in hydrology and pulse perturbations such as drought can lead to hypersalinity, hypoxia, and sulfide toxicity, ultimately causing seagrass die-offs. Florida Bay has undergone two large-scale seagrass die-offs, the first in the late 1980s and early 1990s and the second in 2015. Post-die-off events, samples were collected for stable isotope analysis. Using historical (1998–1999) and contemporary (2018) stable isotope data, we examine how food webs in Florida Bay have changed in response to seagrass die-off over time by measuring contributions of basal sources to energy usage and using trophic niche analysis to compare niche size and overlap. We examined three consumer species sampled in both time periods (Orthopristis chrysoptera, Lagodon rhomboides, and Eucinostomus gula) in our study. Seagrass production comprised the majority of source usage in both datasets. However, contemporary consumers had a mean increase of 18% seagrass usage and a mean decrease in epiphyte usage of 7%. The shift in trophic niche from epiphyte usage (green pathway) toward seagrass usage (brown pathway) may indicate that food web browning is occurring in Florida Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data Availability

All data available at https://github.com/wryanjames/James_etal_ICES_JMS.

References

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263.

    Article  Google Scholar 

  • Bartley TJ, McCann KS, Bieg C, Cazelles K, Granados M, Guzzo MM, McMeans BC. 2019. Food web rewiring in a changing world. Nat Ecol Evol 3(3):345–354.

    Article  PubMed  Google Scholar 

  • Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H. 2004. Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73(5):1007–1012.

    Article  Google Scholar 

  • Beauchesne D, Cazelles K, Archambault P, Dee LE, Gravel D. 2021. On the sensitivity of food webs to multiple stressors. Ecol Lett 24(10):2219–2237.

    Article  PubMed  Google Scholar 

  • Blanchard JL, Law R, Castle MD, Jennings S. 2011. Coupled energy pathways and the resilience of size-structured food webs. Theor Ecol 4:289–300.

    Article  Google Scholar 

  • Blonder B, Lamanna C, Violle C, Enquist BJ. 2014. The n-dimensional hypervolume. Glob Ecol Biogeogr 23:595–609. https://doi.org/10.1111/geb.12146.

    Article  Google Scholar 

  • Brown CE, Bhat MG, Rehage JS, Mirchi A, Boucek R, Engel V, Sukop M. 2018. Ecological-economic assessment of the effects of freshwater flow in the Florida everglades on recreational fisheries. Sci Tot Environ 627:480–493.

    Article  CAS  Google Scholar 

  • Buchsbaum RN, Deegan LA, Horowitz J, Garritt RH, Giblin AE, Ludlam JP, Shull DH. 2009. Effects of regular salt marsh haying on marsh plants, algae, invertebrates and birds at plum island sound, massachusetts. Wetl Ecol Manag 17:469–487.

    Article  Google Scholar 

  • Chasar LC, Chanton JP, Koenig CC, Coleman FC. 2005. Evaluating the effect of environmental disturbance on the trophic structure of Florida bay, USA: multiple stable isotope analyses of contemporary and historical specimens. Limnol Oceanogr 50:1059–1072.

    Article  CAS  Google Scholar 

  • D’Alelio D, Hay Mele B, Libralato S, Ribera d’Alcalà M, Jordán F. 2019. Rewiring and indirect effects underpin modularity reshuffling in a marine food web under environmental shifts. Ecol Evolut 9(20):11631–11646.

    Article  Google Scholar 

  • Entrekin SA, Rosi EJ, Tank JL, Hoellein TJ, Lamberti GA. 2020. Quantitative food webs indicate modest increases in the transfer of allochthonous and autochthonous C to macroinvertebrates following a large wood addition to a temperate headwater stream. Front Ecol Evolut 8:114. https://doi.org/10.3389/fevo.2020.00114.

    Article  Google Scholar 

  • Fourqurean JW, Robblee MB. 1999. Florida bay: a history of recent ecological changes. Estuaries 22:345. https://doi.org/10.2307/1353203.

    Article  CAS  Google Scholar 

  • Fourqurean JW, Schrlau JE. 2003. Changes in nutrient content and stable isotope ratios of C and N during decomposition of seagrasses and mangrove leaves along a nutrient availability gradient in Florida bay, USA. Chem Ecol 19(5):373–390.

    Article  CAS  Google Scholar 

  • Frankovich TA, Fourqurean JW. 1997. Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Mar Ecol Prog Ser 159:37–50. https://doi.org/10.3354/meps159037.

    Article  CAS  Google Scholar 

  • Frankovich TA, Zieman JC. 2005. A temporal investigation of grazer dynamics, nutrients, seagrass leaf productivity, and epiphyte standing stock. Estuaries 28(1):41–52.

    Article  Google Scholar 

  • Frankovich TA, Armitage AR, Wachnicka AH, Gaiser EE, Fourqurean JW. 2009. Nutrient effects on seagrass epiphyte community structure in Florida bay 1. J Phycol 45:1010–1020.

    Article  PubMed  Google Scholar 

  • Fry B. 2006. Stable isotope ecology. Vol. 521. New York: Springer.

    Book  Google Scholar 

  • Glibert PM, Fullerton D, Burkholder JM, Cornwell JC, Kana TM. 2011. Ecological stoichiometry, biogeochemical cycling, invasive species, and aquatic food webs: San Francisco Estuary and comparative systems. Rev Fish Sci 19:358–417.

    Article  Google Scholar 

  • Glibert PM, Heil CA, Madden CJ, Kelly SP. 2021. Dissolved organic nutrients at the interface of fresh and marine waters: flow regime changes, biogeochemical cascades and picocyanobacterial blooms—the example of Florida bay, USA. Biogeochem. https://doi.org/10.1007/s10533-021-00760-4.

    Article  Google Scholar 

  • Hall MO, Furman BT, Merello M, Durako MJ. 2016. Recurrence of Thalassia testudinum seagrass die-off in Florida bay, USA: initial observations. Mar Ecol Prog Ser 560:243–249.

    Article  Google Scholar 

  • Hall MO, Bell SS, Furman BT, Durako MJ. 2021. Natural recovery of a marine foundation species emerges decades after landscape-scale mortality. Sci Rep 11:6973. https://doi.org/10.1038/s41598-021-86160-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harlin MM, Woelkerling WJ, Walker DI. 1985. Effects of a hypersalinity gradient on epiphytic Corallinaceae (Rhodophya) in Shark bay, Western Australia. Phycologia 24:389–402.

    Article  Google Scholar 

  • Hayden B, Myllykangas JP, Rolls RJ, Kahilainen KK. 2017. Climate and productivity shape fish and invertebrate community structure in subarctic lakes. Freshw Biol 62:990–1003.

    Article  Google Scholar 

  • Hayden B, Harrod C, Thomas SM, Eloranta AP, Myllykangas JP, Siwertsson A, Kahilainen KK. 2019. From clear lakes to murky waters –tracing the functional response of high-latitude lake communities to concurrent ‘greening’ and ‘browning.’ Ecol Lett 22:807–816. https://doi.org/10.1111/ele.13238.

    Article  CAS  PubMed  Google Scholar 

  • Hoekman D, McCary MA, Dreyer J, Gratton C. 2019. Reducing allochthonous resources in a subarctic grassland alters arthropod food webs via predator diet and density. Ecosphere 10:e02593. https://doi.org/10.1002/ecs2.2593.

    Article  Google Scholar 

  • James WR, Lesser JS, Litvin SY, Nelson JA. 2020. Assessment of food web recovery following restoration using resource niche metrics. Sci Tot Environ 711:134801. https://doi.org/10.1016/j.scitotenv.2019.134801.

    Article  CAS  Google Scholar 

  • James WR, Santos RO, Rodemann JR, Rezek RJ, Fratto ZW, Furman BT, Nelson JA. 2022. Widespread seagrass die-off has no leagacy effect on basal resource use of seagrass food webs in Florida bay, USA. ICES J Mar Sci. https://doi.org/10.1093/icesjms/fsac112.

    Article  Google Scholar 

  • Jewett-Smith J. 1991. Factors influencing the standing crop of diatom epiphytes of the seagrass halodule wrightii aschers in South Texas seagrass beds. Contrib Mar Sci 32:27–38.

    Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S. 2011. Comparing isotopic niche widths among and within communities: SIBER–stable isotope bayesian ellipses in R. J Anim Ecol 80(3):595–602.

    Article  PubMed  Google Scholar 

  • Kelble CR, Johns EM, Nuttle WK, Lee TN, Smith RH, Ortner PB. 2007. Salinity patterns of Florida Bay Estuarine. Coast Shelf Sci 71(1–2):318–334.

    Article  Google Scholar 

  • Kelble CR, Loomis DK, Lovelace S, Nuttle WK, Ortner PB, Fletcher P, Boyer JN. 2013. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework. PloS One 8:e70766. https://doi.org/10.1371/journal.pone.0070766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrick GA, Walker DI, McComb AJ. 1988. Changes in distribution of macro-algal epiphytes on stems of the seagrass amphibolis antarctica along a salinity gradient in Shark bay, Western Australia. Phycologia 27:201–208.

    Article  Google Scholar 

  • Kirsch KD, Valentine JF, Heck KL Jr. 2002. Parrotfish grazing on turtlegrass Thalassia testudinum: evidence for the importance of seagrass consumption in food web dynamics of the Florida keys national marine sanctuary. Mar Ecol Prog Ser 227:71–85.

    Article  Google Scholar 

  • Koch MS, Schopmeyer SA, Nielsen OI, Kyhn-Hansen C, Madden CJ. 2007. Conceptual model of seagrass die-off in Florida bay: links to biogeochemical processes. J Exp Mar Biol Ecol 350:73–88. https://doi.org/10.1016/j.jembe.2007.05.031.

    Article  CAS  Google Scholar 

  • Layman CA, Arrington DA, Montaña CG, Post DM. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88(1):42–48.

    Article  PubMed  Google Scholar 

  • Leech DM, Pollard AI, Labou SG, Hampton SE. 2018. Fewer blue lakes and more murky lakes across the continental U.S.: Implications for planktonic food webs. Limnol Oceanogr 63:2661–2680. https://doi.org/10.1002/lno.10967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesser JS, James WR, Stallings CD, Wilson RM, Nelson JA. 2020. Trophic niche size and overlap decreases with increasing ecosystem productivity. Oikos 129:1303–1313. https://doi.org/10.1111/oik.07026.

    Article  Google Scholar 

  • Light SS, and Dineen JW 1994. Water control in the everglades: a historical perspective. Everglades: the ecosystem and its restoration, 5: 47–84

  • Marshall FE, Bernhardt CE, Wingard GL. 2020. Estimating late 19th century hydrology in the greater everglades ecosystem: an integration of paleoecologic data and models. Front Environ Sci. https://doi.org/10.3389/fenvs.2020.00003.

    Article  Google Scholar 

  • McPherson BF, and Halley RB. 1996.The south Florida environment: a region under stress (Vol. 1134). US Government Printing Office.

  • Mersmann O, Trautmann H, Steuer D, and Bornkamp B, 2018. Truncnorm: truncated normal distribution. R package version 1.0–8. https://CRAN.Rproject.org/package=truncnorm

  • Nelson JA, Deegan L, Garritt R. 2015. Drivers of spatial and temporal variability in estuarine food webs. Mar Ecol Prog Ser 533:67–77.

    Article  CAS  Google Scholar 

  • Nelson JA, Johnson DS, Deegan LA, Spivak AC, Sommer NR. 2019. Feedbacks between nutrient enrichment and geomorphology alter bottom-up control on food webs. Ecosystems 22:229–242.

    Article  Google Scholar 

  • NOAA/SFER. 2019. Juvenile sportfish survey data. https://www.aoml.noaa.gov/wp-content/uploads/2019/06/Master-Juvenile-Sportfish-NOAA-updated-06.11.19.xlsx

  • Pomeroy LR, leBWilliams PJ, Azam F, Hobbie JE. 2007. The microbial loop. Oceanography 20:28–33.

    Article  Google Scholar 

  • R Core Team. 2020. R: a language and environment for statistical computing. R Found Stat Comput, Vienna. URL http://www.R.project.org/

  • Renken RA, Dixon J, Koehmstedt J, Ishman S, Lietz AC, Marella RL, Memberg S. 2005. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900–2000. US Geol Surv Circular 1275:77.

    Google Scholar 

  • Rezek RJ, Lebreton B, Roark EB, Palmer TA, Pollack JB. 2017. How does a restored oyster reef develop? An assessment based on stable isotopes and community metrics. Mar Biol 164(3):1–17.

    Article  CAS  Google Scholar 

  • Rezek RJ, Massie JA, Nelson JA, Santos RO, Viadero NM, Boucek RE, Rehage JS. 2020. Individual consumer movement mediates food web coupling across a coastal ecosystem. Ecosphere 11:e03305. https://doi.org/10.1002/ecs2.3305.

    Article  Google Scholar 

  • Robblee MB, Barber TR, Carlson PR Jr, Durako MJ, Fourqurean JW, Muehlstein LK, Zieman JC. 1991. Mass mortality of the tropical seagrass Thalassia testudinum in Florida bay (USA). Mar Ecol Prog Ser 71:297–299.

    Article  Google Scholar 

  • Rodemann JR, James WR, Santos RO, Furman BT, Fratto ZW, Bautista V, Rehage JS. 2021. Impact of Extreme Disturbances on Suspended Sediment in Western Florida Bay: Implications for Seagrass Resilience. Front Mar Sci. https://doi.org/10.3389/fmars.2021.633240/full.

    Article  Google Scholar 

  • Rooney N, McCann K, Gellner G, Moore JC. 2006. Structural asymmetry and the stability of diverse food webs. Nature 442:265–269.

    Article  CAS  PubMed  Google Scholar 

  • Rosi-Marshall EJ, Wallace JB. 2002. Invertebrate food webs along a stream resource gradient. Freshw Biol 47:129–141.

    Article  Google Scholar 

  • Santos RO, James RW, Nelson JA, Rehage JS, Serafy J, Pittman SJ, Lirman D. 2022. Influence of seascape spatial pattern on the trophic niche of an omnivorous fish. Ecosphere 13:e3944. https://doi.org/10.1002/ecs2.3944.

    Article  Google Scholar 

  • Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656.

    Article  Google Scholar 

  • Snoeijs P. 1999. Diatoms and environmental change in brackish waters. The diatoms. application for the environmental and earth sciences: Cambridge University Press, Cambridge. p 298333.

    Google Scholar 

  • Stainback AG, Fedler T, Davis SE, Birendra KC. 2019. Recreational fishing in Florida bay: economic significance and angler perspectives. Tour Mar Environ 14:89–105.

    Article  Google Scholar 

  • Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX. 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6:e5096. https://doi.org/10.7717/peerj.5096.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewfik A, Rasmussen JB, McCann KS. 2005. Anthropogenic enrichment alters a marine benthic food web. Ecology 86:2726–2736.

    Article  Google Scholar 

  • Valentine JF, Duffy JE. 2006. The central role of grazing in seagrass ecology. Seagrasses: Biology, Ecology and Conservation, . Springer: Dordrecht. pp 463–501.

    Google Scholar 

  • Williams CJ, Jaffe R, Anderson WT, Jochem FJ. 2009. Importance of seagrass as a carbon source for heterotrophic bacteria in a subtropical estuary (Florida bay). Estuar Coast Shelf Sci 85:507–514.

    Article  CAS  Google Scholar 

  • Wilson RM, Tyson RB, Nelson JA, Balmer BC, Chanton JP, Nowacek DP. 2017. Niche Differentiation and Prey Selectivity among Common Bottlenose Dolphins (Tursiops truncatus) Sighted in St. George Sound Gulf of Mexico. Front Mar Sci 4:235. https://doi.org/10.3389/fmars.2017.00235.

    Article  Google Scholar 

  • Washington State University. Stable isotope core laboratory|Washington State University. (n.d.). Retrieved January 18, 2023, from https://labs.wsu.edu/isotopecore/data-normalization-and-quality-control/

Download references

Acknowledgements

This work was funded by the National Science Foundation, Division of Environmental Biology, Long-Term Ecosystem Restoration (LTER), Florida Coastal Everglades (FCE; Grant No. DEB-2025954); the National Park Service Critical Ecosystems Study Initiative (CESI); and the US Environmental Protection Agency, Region 4, Water Division (Grant No. SF – 02D21200-0).This is contribution #1525 from the Coastlines and Oceans Division of the Institute of Environment at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacy Calhoun-Grosch.

Additional information

Author Contributions: SCG and EMF were conceived study, analyzed data, and wrote the paper; WRJ, ROS, JSR were performed research, wrote the paper; JAN was conceived study, performed research, analyzed data, and wrote the paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (PDF 327 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calhoun-Grosch, S., Foster, E.M., James, W.R. et al. Trophic Niche Metrics Reveal Long-Term Shift in Florida Bay Food Webs. Ecosystems 26, 1183–1194 (2023). https://doi.org/10.1007/s10021-023-00825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00825-5

Keywords

Navigation