Skip to main content

Advertisement

Log in

Fishers' Knowledge Reveals Ecological Interactions Between Fish and Plants in High Diverse Tropical Rivers

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Frugivory and seed dispersal by fish is an important mutualistic interaction in complex and species-rich tropical rivers. The local ecological knowledge (LEK) held by fishers can provide new information on relationships between fishes and plants in less studied rivers. This study aims to investigate the feeding interactions between frugivorous fish and plants through interaction networks based on the fishers' LEK in three rivers in the Brazilian Amazon (Negro, Tapajós and Tocantins). A total of 418 fishers were interviewed in 24 communities (eight in each river). The studied fishes were tambaqui (Colossoma macropomum), matrinxã (Brycon spp.), pacu (Myloplus spp.), pacu manteiga (Mylossoma duriventre), pirapitinga (Piaractus brachypomus), and jaraqui (Semaprochilodus spp.). The interviewed fishers cited a total of 92 plants consumed by the six frugivorous fishes in the three rivers. The interaction networks showed a higher nestedness in the Tocantins, greater connectance and modularity in the Tapajós and more specialization in the Negro, where the protected areas may have contributed to a more complex and specialized interaction network. The more nested network in the Tocantins River indicated the loss of specialized interactions in disturbed communities. The Tapajós River network showed the highest number of interactions between fish and plants, but this river has been threatened by environmental changes. Fishers' LEK associated to network analyses can advance our understanding on ecological interactions. This approach can be also useful to evaluate and mitigate ecological effects from anthropic changes in the Amazon and other high diverse tropical rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

References

  • Agostinho AA, Gomes LC, Veríssimo S, Okada EK. 2004. Flood regime, dam regulation and fish in the Upper Paraná River: Effects on assemblage attributes, reproduction and recruitment. Rev Fish Biol Fish 14:11–19.

    Article  Google Scholar 

  • Albuquerque UP, Ludwig D, Feitosa Ivanilda Soares, de Moura JMB, Gonçalves PHS, da Silva RH, da Silva TC, Gonçalves-Souza T, Ferreira Júnior WS. 2021. Integrating traditional ecological knowledge into academic research at local and global scales. Reg Environ Chang 21:1–11.

    Article  Google Scholar 

  • Allaire J, Gandrud C, Russell K, Yetman C. 2017. networkD3: D3 JavaScript Network Graphs from R. https://cran.r-project.org/package=networkD3

  • Almeida-Neto M, Ulrich W. 2011. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ Model Softw 26:173–178.

    Article  Google Scholar 

  • Anderson JT, Rojas JS, Flecker AS. 2009. High-quality seed dispersal by fruit-eating fishes in Amazonian floodplain habitats. Oecologia 161:279–290.

    Article  PubMed  Google Scholar 

  • Arantes CC, Winemiller KO, Petrere M, Freitas CEC. 2019. Spatial variation in aquatic food webs in the Amazon River floodplain. Freshw Sci 38:213–228.

    Article  Google Scholar 

  • Araujo JM, Correa SB, Penha J, Anderson J, Traveset A. 2021. Implications of overfishing of frugivorous fishes for cryptic function loss in a Neotropical floodplain. J Appl Ecol 58:1499–1510.

    Article  Google Scholar 

  • Assahira C, Piedade MTF, Trumbore SE, Wittmann F, Cintra BBL, Batista ES, de Resende AF, Schöngart J. 2017. Forest Ecology and Management Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. For Ecol Manage 396:113–123. https://doi.org/10.1016/j.foreco.2017.04.016.

    Article  Google Scholar 

  • Aswani S, Lemahieu A, Sauer WHH. 2018. Global trends of local ecological knowledge and future implications. PLoS Biol 13:e0195440.

    Google Scholar 

  • Bailey KD. 1982. Methods of social research, 2nd edn. New York: The Free Press.

    Google Scholar 

  • Baird IG. 2007. Fishes and forests: the importance of seasonally flooded riverine habitat for Mekong River fish feeding. Nat Hist Bull Siam Soc 55:121–148.

    Google Scholar 

  • Barreau A, Ibarra JT, Wyndham FS, Rojas A, Kozak RA. 2022. How can we teach our children if we cannot access the forest? Generational change in Mapuche knowledge of wild edible plants in Andean temperate ecosystems of Chile. J Ethnobiol 36:412–432.

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM. 2003. The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista VS, Lima LG. 2010. In search of traditional bio-ecological knowledge useful for fisheries co-management: the case of jaraquis Semaprochilodus spp. (Characiformes, Prochilodontidae) in Central Amazon. Brazil. J Ethnobiol Ethnomed 6:1–9.

    Google Scholar 

  • Baumgartner MT. 2020. Connectance and nestedness as stabilizing factors in response to pulse disturbances in adaptive antagonistic networks. J Theor Biol. 486:110073. https://doi.org/10.1016/j.jtbi.2019.110073.

    Article  PubMed  Google Scholar 

  • Beckett SJ. 2016. Improved community detection in weighted bipartite networks. R Soc Open Sci 3.

  • Begossi A, Hanazaki N, Ramos RM. 2004. Food chain and the reasons for fish food taboos among Amazonian and Atlantic Forest fishers (Brazil). Ecol Appl 14:1334–1343.

    Article  Google Scholar 

  • Begossi A, Salivonchyk SV, Hallwass G, Hanazaki N, Lopes PFM, Silvano RAM, Dumaresq D, Pittock J. 2019. Fish consumption on the Amazon: a review of biodiversity, hydropower and food security issues. Brazilian J Biol 79:345–357.

    Article  CAS  Google Scholar 

  • Begossi A. 2004. Ecologia de Pescadores da Mata Atlântica e da Amazônia. São Paulo: Nupaub/USP, Hucitec: Nepam/Unicamp

  • Blüthgen N, Menzel F, Blüthgen N. 2006. Measuring specialization in species interaction networks. BMC Ecol 6.

  • Braga PIS, Silva SMG da, Braga JON, Nascimento KGS, Rabelo SL. 2011. A vegetação das comunidades da área de influência do projeto Piatam e do gasoduto Coari-Manaus. Manaus: Reggo Edições

  • Cámara-Leret R, Fortuna MA, Bascompte J. 2019. Indigenous knowledge networks in the face of global change. Proc Natl Acad Sci U S A 116:9913–9918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Capitani L, Angelini R, Keppeler FW, Hallwass G, Silvano RAM. 2021. Food web modeling indicates the potential impacts of increasing deforestation and fishing pressure in the Tapajós River, Brazilian Amazon. Reg Environ Chang 21:1–12.

    Article  Google Scholar 

  • Carreira DC, Dáttilo W, Bruno DL, Percequillo AR, Ferraz KM, Galetti M. 2020. Small vertebrates are key elements in the frugivory networks of a hyperdiverse tropical forest. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-67326-6.

    Article  CAS  Google Scholar 

  • Chaves MS. 2016. Plantas alimentícias não convencionais em comunidades ribeirinhas na Amazônia.

  • Correa SB, Winemiller KO. 2014. Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95:210–224.

    Article  PubMed  Google Scholar 

  • Correa SB, Betancur-R R, de Mérona B, Armbruster JW. 2014. Diet shift of Red Belly Pacu Piaractus brachypomus (Cuvier, 1818) (Characiformes: Serrasalmidae), a Neotropical fish, in the Sepik-Ramu River Basin, Papua New Guinea. Neotrop Ichthyol 12:827–833.

    Article  Google Scholar 

  • Correa SB, Araujo JK, Penha JMF, da Cunha CN, Stevenson PR, Anderson JT. 2015a. Overfishing disrupts an ancient mutualism between frugivorous fishes and plants in Neotropical wetlands. Biol Conserv 191:159–167.

    Article  Google Scholar 

  • Correa SB, Costa-Pereira R, Fleming T, Goulding M, Anderson JT. 2015b. Neotropical fish – fruit interactions: eco-evolutionary dynamics and conservation. Biol Rev 90:1263–1278.

    Article  PubMed  Google Scholar 

  • Correa SB, Arujo JK, Penha J, da Cunha CN, Bobier KE, Anderson JT. 2016. Stability and generalization in seed dispersal networks: a case study of frugivorous fish in Neotropical wetlands. Proc R Soc B Biol Sci 283:1–9.

    Google Scholar 

  • Costa-Pereira R, Correa SB, Galetti M. 2017. Fishing-down within populations harms seed dispersal mutualism. Biotropica 50:319–325.

    Article  Google Scholar 

  • Costa-Pereira R, Lucas C, Crossa M, Anderson JT, Albuquerque BW, Dary EP, Piedade MTF, Demarchi LO, Rebouças ER, da Costa GS, Galetti M, Correa SB. 2018. Defaunation shadow on mutualistic interactions. Proc Natl Acad Sci 115:E2673-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto TBA, Messager ML, Olden JD. 2021. Safeguarding migratory fish via strategic planning of future small hydropower in Brazil. Nat Sustain 4:409–416. https://doi.org/10.1038/s41893-020-00665-4.

    Article  Google Scholar 

  • Dagosta FCP, de Pinna M, Peres CA, Tagliacollo VA. 2020. Existing protected areas provide a poor safety-net for threatened Amazonian fish species. Aquat Conserv Mar Freshw Ecosyst 31:1167–1189. https://doi.org/10.1002/aqc.3461.

    Article  Google Scholar 

  • de Mérona B, Rankin-de-Mérona J. 2004. Food resource partitioning in a fish community of the central Amazon floodplain. Neotrop Ichthyol 2:75–84.

    Article  Google Scholar 

  • de Bomfim JA, Guimarães PR, Peres CA, Carvalho G, Cazetta E. 2018. Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography 41:1899–909.

    Article  Google Scholar 

  • de Mérona B, dos Santos GM, de Almeida RG. 2001. Short term effects of Tucuruí Dam (Amazonia, Brazil) on the trophic organization of fish communities. Environ Biol Fishes 60:375–392.

    Article  Google Scholar 

  • de Resende AF, Schöngart J, Streher AS, Ferreira-Ferreira J, Piedade MTF, Silva TSF. 2019. Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: The collateral effects of hydropower production. Sci Total Environ 659:587–598. https://doi.org/10.1016/j.scitotenv.2018.12.208.

    Article  CAS  PubMed  Google Scholar 

  • Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R. 2011. Analysis of a hyper-diverse seed dispersal network: Modularity and underlying mechanisms. Ecol Lett 14:773–781.

    Article  PubMed  Google Scholar 

  • Dormann CF, Strauss R. 2014. A method for detecting modules in quantitative bipartite networks. Methods Ecol Evol 5:90–98.

    Article  Google Scholar 

  • Dormann C, Gruber B, Fründ J. 2008. Introducing the bipartite package: analysing ecological networks. R News 8:8–11.

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND. 2002. Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci U S A 99:12917–12922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emer C, Jordano P, Pizo MA, Ribeiro MC, da Silva FR, Galetti M. 2019. Seed dispersal networks in tropical forest fragments: Area effects, remnant species, and interaction diversity. Biotropica 52:81–89.

    Article  Google Scholar 

  • Erler DM, Lima DP, Schiavetti A. 2015. Ecological fishing networks in a marine protected area: one possibility for evaluating objectives. Ocean Coast Manag 104:106–114. https://doi.org/10.1016/j.ocecoaman.2014.12.008.

    Article  Google Scholar 

  • Escribano-Avila G, Lara-Romero C, Heleno R, Traveset A. 2018. Tropical Seed Dispersal Networks: Emerging patterns , biases, and keystone species traits. In: Dáttilo, W., Rico-Gray V, editor. Ecological Networks in the Tropics: an integrative overview of species interactions from some of the most species-rich habitats on earth. Springer. pp 93–110.

  • Evangelista-Vale JC, Weihs M, José-Silva L, Arruda R, Sander NL, Gomides SC, Machado TM, Pires-Oliveira JC, Barros-Rosa L, Castuera-Oliveira L, Matias RAM, Martins-Oliveira AT, Bernardo CSS, Silva-Pereira I, Carnicer C, Carpanedo RS, Eisenlohr P V. 2021. Climate change may affect the future of extractivism in the Brazilian Amazon. Biol Conserv 257.

  • Farwig N, Berens DG. 2012. Imagine a world without seed dispersers: a review of threats, consequences and future directions. Basic Appl Ecol 13:109–115.

    Article  Google Scholar 

  • Fearnside PM. 2001. Environmental impacts of Brazil’s Tucuruí Dam: Unlearned lessons for hydroelectric development in Amazonia. Environ Manage 27:377–396.

    Article  CAS  PubMed  Google Scholar 

  • Fearnside PM. 2015. Amazon dams and waterways: Brazil’s Tapajós Basin plans. Ambio 44:426–439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulding M. 1980. Interactions of fishes with fruits and seeds. The fishes and the forest: explorations in amazonian natural history, . University of California Press: London. pp 217–232.

    Chapter  Google Scholar 

  • Goulding M, Carvalho ML, Ferreira EG. 1988. Rio Negro, rich life in poor water: Amazonian diversity and foodchain ecology as seen through fish communities. The Hague: Academic Publishing.

    Google Scholar 

  • Goulding M, Barthem R, Ferreira EJG. 2003. The Smithsonian atlas of the Amazon. Washington, D.C: Smithsonian Books.

    Google Scholar 

  • Guerreiro AIC, Ladle RJ, da Batista V, S. 2016. Riverine fishers’ knowledge of extreme climatic events in the Brazilian Amazonia. J Ethnobiol Ethnomed 12:1–10. https://doi.org/10.1186/s13002-016-0123-x.

    Article  Google Scholar 

  • Hallwass G, Lopes PF, Juras AA, Silvano RAM. 2013. Fishers’ knowledge identifies environmental changes and fish abundance trends in impounded tropical rivers. Ecol Appl 23:392–407.

    Article  PubMed  Google Scholar 

  • Hallwass G, Schiavetti A, Silvano RAM. 2020. Fishers’ knowledge indicates temporal changes in composition and abundance of fishing resources in Amazon protected areas. Anim Conserv 23:36–47.

    Article  Google Scholar 

  • Holling CS, Gunderson LH. 2002. Resilience and adaptive cycles. Panarchy, understanding transformations in human and natural systems, . Island Press: Washington. pp 25–62.

    Google Scholar 

  • Isaac VJ, Ruffino ML. 1996. Population dynamics of tambaqui, Colossoma macropomum Cuvier, in the Lower Amazon, Brazil. Fish Manag Ecol 3:315–333.

    Article  Google Scholar 

  • Isaac VJ, Almeida MC, Giarrizzo T, Deus CP, Vale R, Klein G, Begossi A. 2015. Food consumption as an indicator of the conservation of natural resources in riverine communities of the Brazilian Amazon. An Acad Bras Cienc 87:2229–2242.

    Article  PubMed  Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F. 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640.

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE. 1989. The Flood Pulse Concept in River-Floodplain Systems. In: Dodge DP, Eds. Canadian special publication of fisheries and aquatic sciences. Vol. 106. Proceedings of the international large river symposium (LARS). pp 110–27.

  • Latrubesse EM, Stevaux JC, Sinha R. 2005. Tropical rivers. Geomorphology 70:187–206.

    Article  Google Scholar 

  • Latrubesse EM, Arima E, Ferreira ME, Nogueira SH, Wittmann F, Dias MS, Dagosta FCP, Bayer M. 2019. Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conserv Sci Pract 1:1–8.

    Google Scholar 

  • Lobón-Cervía J, Hess LL, Melack JM, Araujo-Lima CARM. 2015. The importance of forest cover for fish richness and abundance on the Amazon floodplain. Hydrobiologia 750:245–255.

    Article  Google Scholar 

  • Lucas CM. 2008. Within flood season variation in fruit consumption and seed dispersal by two characin fishes of the Amazon. Biotropica 40:581–589.

    Article  Google Scholar 

  • Marjakangas E, Abrego N, Grøtan V, de Lima RAF, Bello C, Bovendorp RS, Culot L, Hasui É, Lima F, Muylaert RL, Niebuhr BB, Oliveira AA, Pereira LA, Prado P, Stevens RD, Vancine MH, Ribeiro MC, Galetti M, Ovaskainen O. 2019. Fragmented tropical forests lose mutualistic plant – animal interactions. Divers Distrib 26:154–168.

    Article  Google Scholar 

  • Mello MAR, Felix GM, Pinheiro RBP, Muylaert RL, Geiselman C, Santana SE, Tschapka M, Lotfi N, A. RF, Stevens RD. 2019. Insights into the assembly rules of a continent-wide multilayer network. Nat Ecol Evol 3:1525–1532. https://doi.org/10.1038/s41559-019-1002-3.

    Article  PubMed  Google Scholar 

  • Melo T, Torrente-Vilara G, Röpke CP. 2019. Flipped reducetarianism: a vegan fish subordinated to carnivory by suppression of the flooded forest in the Amazon. For Ecol Manage 435:138–143.

    Article  Google Scholar 

  • Montoya D, Yallop ML, Memmott J. 2015. Functional group diversity increases with modularity in complex food webs. Nat Commun 6:1–9.

    Article  Google Scholar 

  • Morante-Filho JC, Faria D, Mariano-Neto E, Rhodes J. 2015. Birds in anthropogenic landscapes: The responses of ecological groups to forest loss in the Brazilian Atlantic forest. PLoS One 10:e0128923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagl P, Hallwass G, Tomazoni-Silva LH, Nitschke PP, Rowedder ARP, Romero-Martinez AT, Silvano RAM. 2021. Protected areas and frugivorous fish in tropical rivers: small-scale fisheries, conservation and ecosystem services. Aquat Conserv Mar Freshw Ecosyst 31:2752–2771.

    Article  Google Scholar 

  • Ong L, Campos-Arceiz A, Loke VP, Pura PB, Tunil CM, Din HS, Angah RB, Amirrudin NA, Tan WH, Lily O, Solana-Mena A. 2021. Building ecological networks with local ecological knowledge in hyper-diverse and logistically challenging ecosystems. Methods Ecol Evol 12:2042–53.

    Article  Google Scholar 

  • Patefield WM. 1981. Algorithm AS 159: an efficient method of generating random R × C tables with given row and column totals. J R Stat Soc Ser C Appl Stat 30:91–7.

    Google Scholar 

  • Patton MQ. 2001. Qualitative research and evaluation methods. London: Sage Publications.

    Google Scholar 

  • Pereyra PER, Hallwass G, Poesch M, Silvano RAM. 2021. ‘Taking fishers’ knowledge to the lab’: an interdisciplinary approach to understand fish trophic relationships in the Brazilian amazon. Front Ecol Evol 9:1–15.

    Article  Google Scholar 

  • Piedade MT, Parolin P, Junk W. 2003. Estratégias de dispersão, produção de frutos e extrativismo da palmeira Astrocaryum jauari Mart. Nos Igapós do Rio Negro: implicações para a ictiofauna. Ecol Apl 2:31–40.

    Article  Google Scholar 

  • Piedade MTF, Parolin P, Junk WJ. 2006. Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black water floodplains. Rev Biol Trop 54:1171–1178.

    Article  PubMed  Google Scholar 

  • R Development Core Team. 2021. R: A language and environment for statistical computing. https://www.r-project.org/.

  • Resque OR. 2007. Vocabulário de Frutas Comestíveis na Amazônia. Pará

  • Runde A, Hallwass G, Silvano RAM. 2020. Fishers’ knowledge indicates extensive socioecological impacts downstream of proposed dams in a tropical river. One Earth 2:255–268. https://doi.org/10.1016/j.oneear.2020.02.012.

    Article  Google Scholar 

  • Shanley P, Medina G. 2005. Frutíferas e Plantas Úteis na Vida Amazônica. Belém: CIFOR, Imazon

  • Silva AL, Tamashiro J, Begossi A. 2007. Ethnobotany of riverine populations from the Rio Negro, Amazonia (Brazil). J Ethnobiol 27:46–72.

    Article  Google Scholar 

  • Silvano RAM, Begossi A. 2016. From ethnobiology to ecotoxicology: Fishers’ knowledge on trophic levels as indicator of bioaccumulation in tropical marine and freshwater fishes. Ecosystems 19:1310–1324.

    Article  CAS  Google Scholar 

  • Silvano RAM, Valbo-Jørgensen J. 2008. Beyond fishermen’s tales: Contributions of fishers’ local ecological knowledge to fish ecology and fisheries management. Environ Dev Sustain 10:657–675.

    Article  Google Scholar 

  • Silvano RAM, Silva AL, Ceroni M, Begossi A. 2008. Contributions of ethnobiology to the conservation of tropical rivers and streams. Aquat Conserv Mar Freshw Ecosyst 18:241–260.

    Article  Google Scholar 

  • Silvano RAM, Hallwass G, Lopes PF, Ribeiro AR, Lima RP, Hasenack H, Juras AA. 2014. Co-management and spatial features contribute to secure fish abundance and fishing yields in tropical floodplain lakes. Ecosystems 17:271–285.

    Article  CAS  Google Scholar 

  • Sioli H. 1984. The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Netherlands: Springer.

    Book  Google Scholar 

  • Smith CC, Healey JR, Berenguer E, Young PJ, Taylor B, Elias F, Espírito-Santo F, Barlow J. 2021. Old-growth forest loss and secondary forest recovery across Amazonian countries. Environ Res Lett 16:085009.

    Article  Google Scholar 

  • Smith N. 2015. Palms and People in the Amazon. In Pedrotti F, Ed. Springer

  • Stouffer DB, Bascompte J. 2011. Compartmentalization increases food-web persistence. Proc Natl Acad Sci U S A 108:3648–3652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson AC, Bohlman S. 2021. Cumulative impacts of land cover change and dams on the land–water interface of the Tocantins River. Front Environ Sci 9:1–13.

    Article  Google Scholar 

  • Swanson AC, Kaplan D, Ben Toh K, Marques EE, Bohlman SA. 2021. Changes in floodplain hydrology following serial damming of the Tocantins River in the eastern Amazon. Sci Total Environ 800:149494. https://doi.org/10.1016/j.scitotenv.2021.149494.

    Article  CAS  PubMed  Google Scholar 

  • Thébault E. 2013. Identifying compartments in presence – absence matrices and bipartite networks: insights into modularity measures. J Biogeogr 40:759–768.

    Article  Google Scholar 

  • Thébault E, Fontaine C. 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science (80-) 329:853–6.

    Article  Google Scholar 

  • Trancoso R, Carneiro Filho A, Tomasella J, Schietti J, Forsberg BR, Miller RP. 2010. Deforestation and conservation in major watersheds of the Brazilian Amazon. Environ Conserv 36:277–288.

    Article  Google Scholar 

  • Tregidgo DJ, Barlow J, Pompeu PS, Rocha MDA, Parry L. 2017. Rainforest metropolis casts 1,000-km defaunation shadow. Proc Natl Acad Sci U S A 114:8655–8659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgeon K, Turpin C, Gregory-Eaves I. 2019. Dams have varying impacts on fish communities across latitudes: a quantitative synthesis. Ecol Lett 22:1501–1516.

    Article  PubMed  Google Scholar 

  • Valiente-Banuet A, Aizen MA, Alcantara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez J, Jordano P, Medel R, Navarro L, Obeso J, Oviedo R, Ramírez N, Rey PJ, Traveset A, Verdú M, Zamora R. 2015. Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29:299–307.

    Article  Google Scholar 

  • Vollstädt MGR, Galetti M, Kaiser-Bunbury CN, Simmons BI, Gonçalves F, Morales-Pérez AL, Navarro L, Tarazona- Tubens FL, Spencer S, Carlo T, Salazar J, Faife-Cabrera M, Strong A, Madden H, Mitchell A, Dalsgaard B. 2022. Plant-frugivore interactions across the Caribbean islands: Modularity, invader complexes and the importance of generalist species. Divers Distrib 28:2361–2374.

    Article  Google Scholar 

  • Waldhoff D, Saint-Paul U, Furch B. 2014. Value of fruits and seeds from the floodplain forests of Central Amazonia as food resource for fish. Ecotropica 2:143–156.

    Google Scholar 

  • Weiss B, Zuanon JAS, Piedade MTF. 2016. Viability of seeds consumed by fishes in a lowland forest in the Brazilian Central Amazon. Trop Conserv Sci 9:1–10.

    Google Scholar 

  • Withey K, Berenguer E, Palmeira AF, Espírito-Santo FDB, Lennox GD, Silva CVJ, Aragão LEOC, Ferreira J, França F, Malhi Y, Rossi LC, Barlow J. 2018. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philos Trans R Soc B Biol Sci 373:1–11.

    Article  Google Scholar 

  • Zapelini C, Schiavetti A, Bender MG, Giglio VJ. 2019. Tracking interactions: Shifting baseline and fisheries networks in the largest Southwestern Atlantic reef system. Aquat Conserv Mar Freshw Ecosyst 29:2092–2106. https://doi.org/10.1002/aqc.3224.

    Article  Google Scholar 

Download references

Acknowledgements

We thank to fishers of the Negro, Tapajós and Tocantins rivers who participated and contributed to this study. We thank to A. Schiavetti and L. F.A. Montag for useful comments on a previous version. We thank the team of the HSTM Herbarium at Universidade Federal do Oeste do Pará for the identification of the plants. We thank L. Capitani and J.T. da Silva for help to collect data and K. Calini for preparing the map. We thank to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for research grants to P.E.R.P (140957/2017-0 and 151005/2021-4), A.B (301592/2017-9) and R.A.M.S (303393/2019-0), and to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for a grant to R.A.M.S (CAPES-PRINT, 88887.467553/2019-00). This study was funded by the National Academy of Sciences (NAS)/ USAID (AID-OAA-A-11-00012) and by Eletronorte/ANEEL (Contract 4500057477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Evelyn Rubira Pereyra.

Additional information

Author contributions: PERP and RAMS conceived and designed the methodology. AB, GH, RAMS conducted the fieldwork. LLG identified the plant specimens. PERP analyzed and wrote the first draft of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 67 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereyra, P.E.R., Hallwass, G., Begossi, A. et al. Fishers' Knowledge Reveals Ecological Interactions Between Fish and Plants in High Diverse Tropical Rivers. Ecosystems 26, 1095–1107 (2023). https://doi.org/10.1007/s10021-023-00818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00818-4

Keywords

Navigation