Skip to main content

Advertisement

Log in

Global Positive Effects of Litter Inputs on Soil Nitrogen Pools and Fluxes

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Soil nitrogen (N) pools and fluxes are strongly influenced by litter inputs in natural ecosystems. However, general responses of soil N pools and fluxes to litter inputs from both above- and belowground are still lacking at a global scale. Here, we compiled 2791 paired observations from 145 published articles to assess global effects of altered leaf litter and roots inputs on soil N pools and fluxes. We found that litter addition increased soil N pools and fluxes globally, with a 30.6% increase in soil microbial biomass N (MBN) pool, a 28.9% increase in dissolved organic N (DON) pool, a 15.8% increase in ammonia (NH4+) pool and a 12.6% increase in nitrous oxide (N2O) fluxes. In contrast, litter removal decreased soil MBN, DON and nitrate (NO3) pools and N2O fluxes by 9.6%, 9.2%, 9.1% and 16.9%, respectively. Moreover, the increases in soil N pools in response to leaf litter addition and root removal were greater than their decreases in response to leaf litter removal. Soil N pools in forests, especially mixed forests, responded more positively to litter addition than those in grasslands. However, the negative effects of litter removal on soil N pools were contingent upon environmental conditions. In particular, the negative effects of litter removal on soil DON and NO3 pools were stronger in region with warmer and wetter climates and in soils with higher pH. Our synthesis highlights the globally positive effects of litter inputs on soil N pools and fluxes and the importance of litter type, climate factors and soil pH in understanding soil N pools and fluxes responses. These changes have important implications for soil N supply under global change-induced increases in litterfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Supplementary materials of this article.

References

  • Aciego Pietri JC, Brookes PC. 2008. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology and Biochemistry 40:1856–1861.

    Article  CAS  Google Scholar 

  • Bai E, Li S, Xu W, Li W, Dai W, Jiang P. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist 199:441–451.

    Article  PubMed  Google Scholar 

  • Bai W, Wan S, Niu S, Liu W, Chen Q, Wang Q, Zhang W, Han X, Li L. 2010. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology 16:1306–1316.

    Article  Google Scholar 

  • Berg B. 2014. Decomposition patterns for leaf litter – A theory for influencing factors. Soil Biology and Biochemistry 78:222–232.

    Article  CAS  Google Scholar 

  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. 2010. A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods 1:97–111.

    Article  PubMed  Google Scholar 

  • Brienen RJ, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J and others 2015. Long-term decline of the Amazon carbon sink. Nature 519:344–348.

    Article  CAS  PubMed  Google Scholar 

  • Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J. 2015. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology 21:3200–3209.

    Article  PubMed  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497.

    Article  CAS  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y. 2014. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology 20:2356–2367.

    Article  PubMed  Google Scholar 

  • Craine JM, Morrow C, Fierer N. 2007. Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113.

    Article  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N. 2018. A global atlas of the dominant bacteria found in soil. Science 359:320–325.

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Peng C, Kim D-G, Li J, Liu Y, Hai X, Liu Q, Huang C, Shangguan Z, Kuzyakov Y. 2021. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews 214:103501.

    Article  CAS  Google Scholar 

  • Ding X, Chang Y, Hou H, Peng P, Xiang W. 2021. Quantification of the sources of soluble organic N (SON) from new litter or indigenous soil in a typical subtropical forest. Land Degradation and Development 32:2528–2539.

    Article  Google Scholar 

  • Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB. 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience 13:221–226.

    Article  CAS  Google Scholar 

  • Elrys AS, Ali A, Zhang H, Cheng Y, Zhang J, Cai Z-C, Müller C, Chang SX. 2021a. Patterns and drivers of global gross nitrogen mineralization in soils. Global Change Biology 27:5950–5962.

    Article  CAS  PubMed  Google Scholar 

  • Elrys AS, Wang J, Metwally MAS, Cheng Y, Zhang J-B, Cai Z-C, Chang SX, Müller C. 2021b. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen. Global Change Biology 27:6512–6524.

    Article  CAS  PubMed  Google Scholar 

  • Fahey TJ, Yavitt JB, Sherman RE, Groffman PM, Fisk MC, Maerz JC. 2011. Transport of carbon and nitrogen between litter and soil organic matter in a northern hardwood forest. Ecosystems 14:326–340.

    Article  CAS  Google Scholar 

  • Feng J, He K, Zhang Q, Han M, Zhu B. 2022. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology 28:3426–3440.

    Article  CAS  PubMed  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC, Austin A. 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology 101:943–952.

    Article  CAS  Google Scholar 

  • Gao W, Yan D. 2019. Warming suppresses microbial biomass but enhances N recycling. Soil Biology and Biochemistry 131:111–118.

    Article  CAS  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B. 2010. Pathways of nitrogen utilization by soil microorganisms: A review. Soil Biology and Biochemistry 42:2058–2067.

    Article  CAS  Google Scholar 

  • Gu C, Riley WJ. 2010. Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling: A modeling analysis. Journal of Contaminant Hydrology 112:141–154.

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Deng M, Yang S, Liu W, Wang X, Wang J, Liu L. 2021. The coordination between leaf and fine root litter decomposition and the difference in their controlling factors. Global Ecology and Biogeography 30:2286–2296.

    Article  Google Scholar 

  • Hatton P-J, Kleber M, Zeller B, Moni C, Plante AF, Townsend K, Gelhaye L, Lajtha K, Derrien D. 2012. Transfer of litter-derived N to soil mineral–organic associations: Evidence from decadal 15N tracer experiments. Organic Geochemistry 42:1489–1501.

    Article  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156.

    Article  Google Scholar 

  • Hicks LC, Lajtha K, Rousk J. 2021. Nutrient limitation may induce microbial mining for resources from persistent soil organic matter. Ecology 102:e03328.

    Article  PubMed  Google Scholar 

  • Holmes KW, Chadwick OA, Kyriakidis PC, Silva de Filho EP, Soares JV, Roberts DA. 2006. Large-area spatially explicit estimates of tropical soil carbon stocks and response to land-cover change. Global Biogeochemical Cycles 20: GB3004.

  • Hooker TD, Stark JM. 2008. Soil C and N cycling in three semiarid vegetation types: Response to an in situ pulse of plant detritus. Soil Biology and Biochemistry 40:2678–2685.

    Article  CAS  Google Scholar 

  • Hu H-W, Zhang L-M, Dai Y, Di H-J, He J-Z. 2013. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. Journal of Soils and Sediments 13:1439–1449.

    Article  Google Scholar 

  • Huang W, Spohn M. 2015. Effects of long-term litter manipulation on soil carbon, nitrogen, and phosphorus in a temperate deciduous forest. Soil Biology and Biochemistry 83:12–18.

    Article  CAS  Google Scholar 

  • Jackson RB, Mooney HA, Schulze E-D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America 94:7362–7366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A. 2005. Dissolved organic nitrogen uptake by plants – an important N uptake pathway? Soil Biology and Biochemistry 37:413–423.

    Article  CAS  Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KWT, Jones DL. 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry 38:898–911.

    Article  CAS  Google Scholar 

  • Khokhar NH, Park J-W. 2021. Contribution of different quantities of leaf litter to nitrous oxide emission from a temperate deciduous forest. KSCE Journal of Civil Engineering 25:1163–1175.

    Article  Google Scholar 

  • Köchy M, Wilson SD. 1997. Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie. Ecology 78:732–739.

    Article  Google Scholar 

  • Lajtha K, Bowden RD, Crow S, Fekete I, Kotroczó Z, Plante A, Simpson MJ, Nadelhoffer KJ. 2018. The detrital input and removal treatment (DIRT) network: Insights into soil carbon stabilization. Science of the Total Environment 640–641:1112–1120.

    Article  PubMed  Google Scholar 

  • Lajtha K, Bowden RD, Nadelhoffer K. 2014. Litter and root manipulations provide insights into soil organic matter dynamics and stability. Soil Science Society of America Journal 78:S261–S269.

    Article  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD. 2011. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil 348:7–27.

    Article  CAS  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE. 2008. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution 23:95–103.

    Article  PubMed  Google Scholar 

  • Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature 528:60–68.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Tang Z, Song Z, Chen W, Tian D, Tang S, Wang X, Wang J, Liu W, Wang Y, Li J, Jiang L, Luo Y, Niu S. 2022. Variations and controlling factors of soil denitrification rate. Global Change Biology 28:2133–2145.

    Article  PubMed  Google Scholar 

  • Li Z, Tian D, Wang B, Wang J, Wang S, Chen HYH, Xu X, Wang C, He N, Niu S. 2019. Microbes drive global soil nitrogen mineralization and availability. Global Change Biology 25:1078–1088.

    Article  PubMed  Google Scholar 

  • Li Z, Zeng Z, Tian D, Wang J, Fu Z, Zhang F, Zhang R, Chen W, Luo Y, Niu S. 2020a. Global patterns and controlling factors of soil nitrification rate. Global Change Biology 26:4147–4157.

    Article  PubMed  Google Scholar 

  • Li Z, Zeng Z, Tian D, Wang J, Wang B, Chen HYH, Quan Q, Chen W, Yang J, Meng C, Wang Y, Niu S. 2020b. Global variations and controlling factors of soil nitrogen turnover rate. Earth-Science Reviews 207:103250.

    Article  CAS  Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, and others 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354: aaf8957.

  • Lu M, Zhou X, Yang Q, Li H, Luo Y, Fang C, Chen J, Yang X, Li B. 2013. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94:726–738.

    Article  PubMed  Google Scholar 

  • Ma H, Mo L, Crowther TW, Maynard DS, van den Hoogen J, Stocker BD, Terrer C, Zohner CM. 2021. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nature Ecology and Evolution 5:1110–1122.

    Article  PubMed  Google Scholar 

  • Magill AH, Aber JD. 2000. Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biology and Biochemistry 32:603–613.

    Article  CAS  Google Scholar 

  • Malhi Y, Doughty C, Galbraith D. 2011. The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B 366:3225–3245.

    Article  CAS  Google Scholar 

  • Mason RE, Craine JM, Lany NK, Jonard M, Ollinger SV, Groffman PM, Fulweiler RW, Angerer J, Read QD, Reich PB, Templer PH, Elmore AJ. 2022. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376:eabh3767.

  • Moorhead DL, Lashermes G, Sinsabaugh RL. 2012. A theoretical model of C- and N-acquiring exoenzyme activities, which balances microbial demands during decomposition. Soil Biology and Biochemistry 53:133–141.

    Article  CAS  Google Scholar 

  • Moorhead DL, Sinsabaugh RL. 2006. A theoretical model of litter decay microbial interaction. Ecological Monographs 76:151–174.

    Article  Google Scholar 

  • Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A. 2014. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology 5:22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytologist 182:31–48.

    Article  PubMed  Google Scholar 

  • Niu S, Classen AT, Dukes JS, Kardol P, Liu L, Luo Y, Rustad L, Sun J, Tang J, Templer PH, Thomas RQ, Tian D, Vicca S, Wang Y-P, Xia J, Zaehle S. 2016. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters 19:697–709.

    Article  PubMed  Google Scholar 

  • Nugroho RA, Röling WFM, Laverman AM, Verhoef HA. 2007. Low nitrification rates in acid scots pine forest soils are due to pH-related factors. Microbial Ecology 53:89–97.

    Article  CAS  PubMed  Google Scholar 

  • Osborne BB, Soper FM, Nasto MK, Bru D, Hwang S, Machmuller MB, Morales ML, Philippot L, Sullivan BW, Asner GP, Cleveland CC, Townsend AR, Porder S. 2021. Litter inputs drive patterns of soil nitrogen heterogeneity in a diverse tropical forest: Results from a litter manipulation experiment. Soil Biology and Biochemistry 158:108247.

    Article  CAS  Google Scholar 

  • Raich JW, Nadelhoffer KJ. 1989. Belowground Carbon Allocation in Forest Ecosystems: Global Trends. Ecology 70:1346–1354.

    Article  Google Scholar 

  • Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM. 2006. Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87.

    Article  PubMed  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MS, Adams DC, Gurevitch J. 2000. MetaWin: Statistical Software for Meta-Analysis. Massachusetts, USA: Sinauer Associates Inc.

    Google Scholar 

  • Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J, Gcte N. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562.

    Article  CAS  PubMed  Google Scholar 

  • Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ. 2011. Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change 1:304–307.

    Article  CAS  Google Scholar 

  • Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC. 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74.

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20:5–15.

    Article  PubMed  Google Scholar 

  • Wang J, Defrenne C, McCormack ML, Yang L, Tian D, Luo Y, Hou E, Yan T, Li Z, Bu W, Chen Y, Niu S. 2021. Fine-root functional trait responses to experimental warming: a global meta-analysis. New Phytologist 230:1856–1867.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Yu Y, He T, Wang Y. 2017. Aboveground and belowground litter have equal contributions to soil CO2 emission: an evidence from a 4-year measurement in a subtropical forest. Plant and Soil 421:7–17.

    Article  CAS  Google Scholar 

  • Whalen ED, Lounsbury N, Geyer K, Anthony M, Morrison E, van Diepen LTA, Le Moine J, Nadelhoffer K, vanden Enden L, Simpson MJ, Frey SD. 2021. Root control of fungal communities and soil carbon stocks in a temperate forest. Soil Biology and Biochemistry 161: 108390.

  • Wieder WR, Cleveland CC, Townsend AR. 2011. Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Global Change Biology 17:3195–3207.

    Article  Google Scholar 

  • Williams M, Schwarz PA, Law BE, Irvine J, Kurpius MR. 2005. An improved analysis of forest carbon dynamics using data assimilation. Global Change Biology 11:89–105.

    Article  Google Scholar 

  • Xiao C, Janssens IA, Zhou Y, Su J, Liang Y, Guenet B. 2015. Strong stoichiometric resilience after litter manipulation experiments; a case study in a Chinese grassland. Biogeosciences 12:757–767.

    Article  Google Scholar 

  • Xu S, Liu LL, Sayer EJ. 2013. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences 10:7423–7433.

    Article  Google Scholar 

  • Yuan Z, Chen HYH. 2009. Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography 18:759–759.

    Article  Google Scholar 

  • Yuan ZY, Chen HYH. 2010. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Critical Reviews in Plant Sciences 29:204–221.

    Article  CAS  Google Scholar 

  • Yuan ZY, Chen HYH, Reich PB. 2011. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Communications 2:344.

    Article  CAS  PubMed  Google Scholar 

  • Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W. 2015. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecological Monographs 85:133–155.

    Article  Google Scholar 

  • Zhao M, Running SW. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Hu Z, Pan X, Chen X, Derrien D, Hu F, Liu M, Hättenschwiler S. 2021. Carbon and nitrogen transfer from litter to soil is higher in slow than rapid decomposing plant litter: A synthesis of stable isotope studies. Soil Biology and Biochemistry 156:108196.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (32171641, 32022056, 32101509 and 31922052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyin Ni.

Additional information

Author Contributions: XN and FW conceived the idea; JY, XW, XZ and QW collected the data; JY and KY performed the data analyses; JY wrote the first version of the manuscript; JY, XN and FW made revisions.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 899 kb)

Supplementary file2 (CSV 407 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wu, F., Wei, X. et al. Global Positive Effects of Litter Inputs on Soil Nitrogen Pools and Fluxes. Ecosystems 26, 860–872 (2023). https://doi.org/10.1007/s10021-022-00800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00800-6

Keywords

Navigation