Skip to main content
Log in

Large-Scale Quantification and Correlates of Ungulate Carrion Production in the Anthropocene

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Carrion production is one of the most crucial yet neglected and understudied processes in food webs and ecosystems. In this study, we performed a large-scale estimation of the maximum potential production and spatial distribution of ungulate carrion biomass from five major sources in peninsular Spain, both anthropogenic (livestock, big game hunting, roadkills) and natural (predation, natural mortality). Using standardized ungulate carrion biomass (kg/year/100km2) estimates, we evaluated the relationship between ungulate carrion production and two ecosystem-level factors: global human modification (GHM) and primary productivity (NDVI). We found that anthropogenic carrion sources supplied about 60 times more ungulate carrion biomass than natural sources (mean = 90,172 vs. 1533 kg/year/100km2, respectively). Within anthropogenic carrion sources, livestock was by far the major carrion provider (91.1% of the annual production), followed by big game hunting (7.86%) and roadkills (0.05%). Within natural carrion sources, predation of ungulates provided more carrion (0.81%) than natural mortality (0.13%). Likewise, we found that the spatial distribution of carrion differed among carrion sources, with anthropogenic carrion being more aggregated in space than natural carrion. Our models showed that GHM was positively related to carrion production from livestock and roadkills, and that wild ungulate carrion supplied by natural sources and big game hunting was more frequently generated in more productive areas (higher NDVI). These findings indicate a disconnection between the main ungulate carrion source (livestock) and primary productivity. Ongoing socio-economic changes in developed countries (for example increase of intensive livestock husbandry and rewilding processes) could lead to additional alteration of carrion production processes, with potential negative impacts at the community and ecosystem levels. Overall, we highlight that carrion biomass quantification should be considered a crucial tool in evaluating ecosystem health and delineating efficient ecosystem management guidelines in the Anthropocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

The data that support the findings and scripts used to develop models embedded in this study are openly available in Zenodo; https://zenodo.org/badge/DOI/10.5281/zenodo.5196414.svg.

References

  • Acevedo P, Farfán MA, Márquez AL, Delibes-Mateos M, Real R, Vargas JM. 2011. Past, present and future of wild ungulates in relation to changes in land use. Landscape Ecology 26:19–31.

  • Acevedo P, Quirós-Fernández F, Casal J, Vicente J. 2014. Spatial distribution of wild boar population abundance: Basic information for spatial epidemiology and wildlife management. Ecological Indicators 36:594–600.

  • Apollonio M, Andersen R, Putman R. (Eds.). 2010. European ungulates and their management in the 21st century. Cambridge University Press.

  • Arrondo E, Morales-Reyes Z, Moleón M, Cortés-Avizanda A, Donázar JA, Sánchez-Zapata JA. 2019. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic and Applied Ecology 41:56–66.

    Article  Google Scholar 

  • Arrondo E, Navarro J, Perez-García JM, Mateo R, Camarero PR, Martin-Doimeadios RCR, Jiménez-Moreno M, Cortés-Avizanda A, Navas I, García-Fernández AJ, Sánchez-Zapata JA, Donázar JA. 2020. Dust and bullets: stable isotopes and GPS tracking disentangle lead sources for a large avian scavenger. Environmental Pollution 266:115022.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa JM, Pascual-Rico R, Martinez SE, Sanchez-Zapata JA. 2020. Ungulates attenuate the response of Mediterranean mountain vegetation to climate oscillations. Ecosystems 23:957–972.

    Article  CAS  Google Scholar 

  • Barbosa AM, Real R, Munoz AR, Brown JA. 2015. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Diversity and Distributions 19:1333–1338.

    Article  Google Scholar 

  • Barja I. 2009. Prey and prey-age preference by the Iberian wolf Canis lupus signatus in a multiple-prey ecosystem. Wildlife Biology 15:147–154

  • Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. Proceedings of the National Academy of Sciences U.S.A 115:6506–6511.

    Article  CAS  Google Scholar 

  • Barton PS, Cunningham SA, Lindenmayer DB, Manning AD. 2013. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171:761–772.

    Article  PubMed  Google Scholar 

  • Barton PS, Evans MJ, Foster CN, Pechal JL, Bump JK, Quaggiotto MM, Benbow ME. 2019. Towards quantifying carrion biomass in ecosystems. Trends in Ecology & Evolution 34:950–961.

    Article  Google Scholar 

  • Beasley JC, Olson ZH, DeVault TL. 2012. Carrion cycling in food webs: comparisons among terrestrial and marine ecosystems. Oikos 121:1021–1026.

    Article  Google Scholar 

  • Benbow EM, Tomberlin JK, Tarone AM. 2015. Carrion Ecology, Evolution, and Their Applications. Boca Raton, Florida: CRC Press.

    Book  Google Scholar 

  • Benítez-López A, Santini L, Schipper AM, Busana M, Huijbregts MA. 2019. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biology 17:e3000247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanco G, Cortés-Avizanda A, Frías Ó, Arrondo E, Donázar JA. 2019. Livestock farming practices modulate vulture diet-disease interactions. Global Ecology and Conservation 17:e00518.

    Article  Google Scholar 

  • Blanco JC, Reig S, de la Cuesta L. 1992. Distribution, status and conservation problems of the wolf Canis lupus in Spain. Biological Conservation 60:73–80.

    Article  Google Scholar 

  • Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretical approach. New York: Springer-Verlag.

    Google Scholar 

  • Copernicus Global Land Service 2020. https://land.copernicus.eu/global/products/ndvi (accessed July 2020).

  • Cortés-Avizanda A, Selva N, Carrete M, Donázar JA. 2009. Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic and Applied Ecology 10:265–272.

    Article  Google Scholar 

  • Cortés-Avizanda A, Jovani R, Carrete M, Donázar JA. 2012. Resource unpredictability promotes species diversity and coexistence in an avian scavenger guild: a field experiment. Ecology 93:2570–2579.

    Article  PubMed  Google Scholar 

  • Cortés-Avizanda A, Donázar JA, Pereira HM. 2015. Top scavengers in a wilder Europe. In: Pereira HM, Navarro LM, Eds. Rewilding European landscapes, . Cham: Springer International Publishing.

    Google Scholar 

  • Cortés-Avizanda A, Blanco G, DeVault TL, Markandya A, Virani MZ, Brandt J, Donázar JA. 2016. Supplementary feeding and endangered avian scavengers: benefits, caveats, and controversies. Frontiers in Ecology and the Environment 14:191–199.

    Article  Google Scholar 

  • DeVault TL, Rhodes OE, Shivik JA. 2003. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234.

    Article  Google Scholar 

  • DeVault TL, Blackwell BF, Seamans TW, Lima SL, Fernández-Juricic E. 2015. Speed kills: ineffective avian escape responses to oncoming vehicles. Proceedings of the Royal Society of London b: Biological Sciences 282:20142188.

    Google Scholar 

  • DÌaz M, Campos P, Pulido FJ,. 1997. The Spanish dehesa: a diversity in land use and wildlife. In: Pain DJ, Pienkowski MW, Eds. Farming and Birds in Europe, . The Common Agricultural Policy and its Implications for Bird Conservation: Academic Press, London. pp 178–209.

    Google Scholar 

  • Donázar JA, Margalida A, Campión D. 2009. Vultures, feedings stations and sanitary legislation: a conflict and its consequences from the perspective of conservation biology, Munibe 29 (Suppl). Spain: Sociedad de Ciencias Aranzadi San Sebastián.

    Google Scholar 

  • ESRI. 2016. ArcGIS Desktop: Release 10.5, Redlands, CA: Environmental Systems Research Institute.

  • Fernández-Gómez L, Cortés-Avizanda A, Arrondo A, García-Alfonso M, Ceballos O, Montelío E, Dónazar JA. 2022. Vultures feeding on the dark side: current sanitary regulations may not be enough. Bird Conservation International, in press.

  • Foley J, Ramankutty N, Brauman K, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O'Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM. 2011. Solutions for a cultivated planet. Nature 478:337–342.

  • Gangoso L, Cortés-Avizanda A, Sergiel A, Pudifoot B, Miranda F, Muñoz J, Delgado-González A, Moleón M, Sánchez-Zapata JA, Arrondo E, Donázar JA. 2021. Avian scavengers living in anthropized landscapes have shorter telomeres and higher levels of glucocorticoid hormones. Science of the Total Environment 782:146920.

    Article  CAS  Google Scholar 

  • Goode K, Rey K. 2019. ggResidpanel: Panels and Interactive Versions of Diagnostic Plots using 'ggplot2'. R package version 0.3.0. https://CRAN.R-project.org/package=ggResidpanel

  • Grilo C, Koroleva E, Andrášik R, Bíl M, González-Suárez M. 2020. Roadkill risk and population vulnerability in European birds and mammals. Frontiers in Ecology and the Environment 18:323–328.

    Article  Google Scholar 

  • Gutiérrez-Cánovas C, Moleón M, Mateo-Tomás P, Olea PP, Sebastián-González E, Sánchez-Zapata JA. 2020. Large home range scavengers support higher rates of carcass removal. Functional Ecology 34:1921–1932.

    Article  Google Scholar 

  • Herrero-Villar M, Delepoulle É, Suárez-Regalado L, Solano-Manrique C, Juan-Sallés C, Iglesias-Lebrija JJ, Camarero PR, González F, Álvarez E, Mateo R. 2021. First diclofenac intoxication in a wild avian scavenger in Europe. Science of the Total Environment 782:146890.

    Article  CAS  Google Scholar 

  • Hijmans RJ. 2020. Raster: Geographic Data Analysis and Modelling. R package version 3.4–5. https://CRAN.R-project.org/package=raster

  • Hunt WG, Burnham W, Parish CN, Burnham KK, Mutch B, Oaks JL. 2006. Bullet fragments in deer remains: Implications for lead exposure in avian scavengers. Wildlife Society Bulletin 34:167–170.

    Article  Google Scholar 

  • Hurley MA, Hebblewhite M, Gaillard JM, Dray S, Taylor KA, Smith WK, Zager P, Bonenfant C. 2014. Functional analysis of Normalized Difference Vegetation Index curves reveals overwinter mule deer survival is driven by both spring and autumn phenology. Philosophical Transactions of the Royal Society b: Biological Sciences 369:20130196.

    Article  Google Scholar 

  • Ibisch PL, Hoffmann MT, Kreft S, Pe’er G, Kati V, Biber-Freudenberger L, DellaSala DA, Vale MM, Hobson PR, Selva N. 2016. A global map of roadless areas and their conservation status. Science 354:1423–1427.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy CM, Oakleaf JR, Theobald DM, Baruch-Mordo S, Kiesecker J. 2019. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology 25:811–826.

    Article  PubMed  Google Scholar 

  • Lagos L, Bárcena F. 2018. Spatial variability in wolf diet and prey selection in Galicia (NW Spain). Mammal research 63:125–139.

  • Lambertucci SA, Speziale KL, Rogers TE, Morales JM. 2009. How do roads affect the habitat use of an assemblage of scavenging raptors? Biodiversity and Conservation 18:2063–2074.

    Article  Google Scholar 

  • Lessard JP, Belmaker J, Myers JA, Chase JM, Rahbek C. 2012. Inferring local ecological processes amid species pool influences. Trends in Ecology & Evolution 27:600–607.

    Article  Google Scholar 

  • Liu L, Greaver TL. 2009. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters 12:1103–1117.

    Article  CAS  PubMed  Google Scholar 

  • López-López P, Benavent-Corai J, García-Ripollés C, Urios V. 2013. Scavengers on the move: behavioural changes in foraging search patterns during the annual cycle. PloS One 8:e54352.

    Article  PubMed  PubMed Central  Google Scholar 

  • López-López P, García-Ripollés C, Urios V. 2014. Food predictability determines space use of endangered vultures: implications for management of supplementary feeding. Ecological Applications 24:938–949.

    Article  PubMed  Google Scholar 

  • Lundberg J, Moberg F. 2003. Mobile link organisms and ecosystem functioning: 710 Implications for ecosystem resilience and management. Ecosystems 6:87–98.

    Article  Google Scholar 

  • MAGRAMA. 2020. Spanish Ministry of Agriculture, Food, and Environment. https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/Est_Anual_Caza.aspx (accessed April 2020).

  • Margalida A, Donázar JA, Carrete M, Sánchez-Zapata JA. 2010. Sanitary versus environmental policies: fitting together two pieces of the puzzle of European vulture conservation. Journal of Applied Ecology 47:931–935.

    Article  Google Scholar 

  • Margalida A, Colomer MÀ, Sanuy D. 2011. Can wild ungulate carcasses provide enough biomass to maintain avian scavenger populations? An empirical assessment using a bio-inspired computational model. PloS One 6:e20248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margalida A, Moleón M. 2016. Toward carrion-free ecosystems? Frontiers in Ecology and Environment 14:183–184.

    Article  Google Scholar 

  • Margalida A, Green RE, Hiraldo F, Blanco G, Sánchez-Zapata JA, Santangeli A, Duriez O, Donázar JA. 2021. Ban veterinary use of diclofenac in Europe. Science 372:694–695.

    Article  PubMed  Google Scholar 

  • Martin-Díaz P, Cortés-Avizanda A, Serrano D, Arrondo E, Sánchez-Zapata JA, Donázar JA. 2020. Rewilding processes shape the use of Mediterranean landscapes by an avian top scavenger. Scientific Reports 10:1–12.

    Article  Google Scholar 

  • Mateo-Tomás P, Olea PP, Moleón M, Vicente J, Botella F, Selva N, Viñuela J, Sánchez-Zapata JA. 2015. From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Diversity and Distributions 21:913–924.

    Article  Google Scholar 

  • Mateo-Tomás P, Olea PP, López-Bao JV. 2019. Time to monitor livestock carcasses for biodiversity conservation and public health. Journal of Applied Ecology 56:1850–1855.

    Article  Google Scholar 

  • McAuliffe GA, Chapman DV, Sage CL. 2016. A thematic review of life cycle assessment (LCA) applied to pig production. Environmental Impact Assessment Review 56:12–22.

    Article  Google Scholar 

  • McCullagh P, Nelder JA. 1989. Generalized Linear Models. London: Chapman and Hall.

    Book  Google Scholar 

  • MITECO. 2014. Ministry for Ecological Transition and Demographic Challenge. https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-especiesterrestres/ieet_mamiferos_censo_lobo.aspx (accessed April 2020).

  • MNCN-CSIC .2007. Virtual encyclopedia of the Spanish vertebrates. http://www.vertebradosibericos.org/ (accessed April 2020).

  • Moleón M, Sánchez-Zapata JA, Selva N, Donázar JA, Owen-Smith N. 2014. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biological Reviews 89:1042–1054.

    Article  PubMed  Google Scholar 

  • Moleón M, Selva N, Sánchez-Zapata JA. 2020. The components and spatiotemporal dimension of carrion biomass quantification. Trends in Ecology and Evolution 35:91–92.

    Article  PubMed  Google Scholar 

  • Moleón M, Selva N, Quaggiotto MM, Bailey DM, Cortés-Avizanda A, DeVault TL. 2019. Carrion availability in space and time. Carrion ecology and management, . Springer: Cham. pp 23–44.

    Chapter  Google Scholar 

  • Moleón M, Sánchez-Zapata JA. 2015. The living dead: time to integrate scavenging into ecological teaching. BioScience 65:1003–1010.

    Article  Google Scholar 

  • Moleón M, Sánchez-Zapata JA, Sebastián-González E, Owen-Smith N. 2015. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124:1391–1403.

    Article  Google Scholar 

  • Monclús L, Shore RF, Krone O. 2020. Lead contamination in raptors in Europe: A systematic review and meta-analysis. Science of the Total Environment 748:141437.

    Article  PubMed  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH. 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7:584–600.

    Article  Google Scholar 

  • Morales-Reyes Z, Pérez-García JM, Moleón M, Botella F, Carrete M, Lazcano C, Moreno-Opo R, Margalida A, Donázar JA, Sánchez-Zapata JA. 2015. Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions. Scientific Reports 5:7811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales-Reyes Z, Pérez-García JM, Moleón M, Botella F, Carrete M, Donázar JA, Cortés-Avizanda A, Arrondo E, Moreno-Opo R, Jiménez J, Margalida M. 2017. Evaluation of the network of protection areas for the feeding of scavengers in Spain: from biodiversity conservation to greenhouse gas emission savings. Journal of Applied Ecology 54:1120–1129.

    Article  CAS  Google Scholar 

  • Morales JS, Rojas RM, Perez-Rodriguez F, Casas AA, López MA. 2011. Risk assessment of the lead intake by consumption of red deer and wild boar meat in Southern Spain. Food Additives and Contaminants: Part A 28:1021–1033.

    Article  CAS  Google Scholar 

  • Moreno-Opo R, Margalida A. 2019. Human-mediated carrion: effects on ecological processes. Carrion Ecology and Management, . Springer: Cham. pp 183–211.

    Chapter  Google Scholar 

  • Muñoz-Lozano C, Martín-Vega D, Martínez-Carrasco C, Sánchez-Zapata JA, Morales-Reyes Z, Gonzálvez M, Moleón M. 2019. Avoidance of carnivore carcasses by vertebrate scavengers enables colonization by a diverse community of carrion insects. PLoS One 14:e0221890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG, Alibakhshi S. 2019. ELSA: Entropy-based local indicator of spatial association. Spatial Statistics 29:66–88.

    Article  Google Scholar 

  • Naylor R, Steinfeld H, Falcon W, Galloway J, Smil V, Bradford E, Mooney H. 2005. Losing the links between livestock and land. Science 310:1621–1622.

    Article  CAS  PubMed  Google Scholar 

  • Newsome TM, Dellinger JA, Pavey CR, Ripple WJ, Shores CR, Wirsing AJ, Dickman CR. 2015. The ecological effects of providing resource subsidies to predators: resource subsidies and predators. Global Ecology and Biogeography 24:1–11.

    Article  Google Scholar 

  • Nyhus PJ. 2016. Human–wildlife conflict and coexistence. Annual Review of Environment and Resources 41:143–171.

    Article  Google Scholar 

  • Olea PP, Mateo-Tomás P. 2009. The role of traditional farming practices in ecosystem conservation: the case of transhumance and vultures. Biological Conservation 142:1844–1853.

    Article  Google Scholar 

  • Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez-Abraín A. 2013. Ecological and evolutionary implications of food subsidies from humans. Ecology Letters 16:1501–1514.

    Article  PubMed  Google Scholar 

  • Pausas JG, Bond WJ. 2020. On the three major recycling pathways in terrestrial ecosystems. Trends in Ecology & Evolution 35:767–775.

    Article  Google Scholar 

  • Payne LX, Moore JW. 2006. Mobile scavengers create hotspots of freshwater productivity. Oikos 115:69–80.

    Article  CAS  Google Scholar 

  • Pereira LM, Owen-Smith N, Moleón M. 2014. Facultative predation and scavenging by mammalian carnivores: seasonal, regional and intra-guild comparisons. Mammal Review 44:44–55.

    Article  Google Scholar 

  • Perino A, Pereira HM, Navarro LM, Fernández N, Bullock JM, Ceausu S, Cortés-Avizanda A, van Klink R, Kuemmerle T, Lomba A, Pe’er G, Plieninger T, Rey Benayas JM, Sandom CJ, Svenning JC, Wheeler HC. 2019. Rewilding complex ecosystems. Science 364:6438.

    Article  Google Scholar 

  • Pettorelli N, Gaillard JM, Mysterud A, Duncan P, Chr. Stenseth N, Delorme D, Van Laere G, Toïgo C, Klein F. 2006. Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer. Oikos 112:565–572.

    Article  Google Scholar 

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jędrzejewska B, Lima M, Kausrud K. 2011. The Normalised Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Research 46:15–27.

    Article  Google Scholar 

  • Polis GA, Power ME, Huxel GR. 2004. Food webs at the landscape level. Univeristy of Chicago Press.

    Google Scholar 

  • Putman R, Apollonio M, Andersen R, Eds. 2011. Ungulate management in Europe: problems and practices. Cambridge University Press.

    Google Scholar 

  • R Development Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna: R

  • Rooney N, McCann K, Gellner G, Moore JC. 2006. Structural asymmetry and the stability of diverse food webs. Nature 442:265–269.

    Article  CAS  PubMed  Google Scholar 

  • Sáenz-de-Santa-María A, Tellería JL. 2015. Wildlife-vehicle collisions in Spain. European Journal of Wildlife Research 61:399–406.

    Article  Google Scholar 

  • Sandercock BK, Nilsen EB, Brøseth H, Pedersen HC. 2011. Is hunting mortality additive or compensatory to natural mortality? Effects of experimental harvest on the survival and cause-specific mortality of willow ptarmigan. Journal of Animal Ecology 80:244–258.

    Article  PubMed  Google Scholar 

  • Sebastián-González E, Morales-Reyes Z, Botella F, Naves-Alegre L, Pérez-García JM, Mateo-Tomás P, Olea PP, Moleón M, Barbosa JM, Hiraldo F, Arrondo E, Donázar JA, Cortés-Avizanda A, Selva N, Lambertucci SA, Bhattacharjee A, Brewer AL, Abernethy EF, Turner KL, Beasley JC, DeVault TL, Gerke HC, Rhodes OE, Ordiz A, Wikenros C, Zimmermann B, Wabakken P, Wilmers CC, Smith JA, Kendall CJ, Ogada D, Frehner E, Allen ML, Wittmer HU, Butler JRA, du Toit JT, Margalida A, Oliva-Vidal P, Wilson D, Jerina K, Krofel M, Kostecke R, Inger R, Per E, Ayhan Y, Ulusoy H, Vural D, Inagaki A, Koike S, Samson A, Perrig PL, Spencer E, Newsome TM, Heurich M, Anadón JD, Buechley ER, Sánchez-Zapata JA. 2020. Network structure of vertebrate scavenger assemblages at the global scale: drivers and ecosystem functioning implications. Ecography 43:1143–1155.

    Article  Google Scholar 

  • Selva N, Jedrzejewska B, Jedrzejewski W. 2005. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Canadian Journal of Zoology 83:1590–1601.

    Article  Google Scholar 

  • Sevillano Morales J, Moreno-Ortega A, Amaro Lopez MA, Arenas Casas A, Cámara-Martos F, Moreno-Rojas R. 2018. Game meat consumption by hunters and their relatives: a probabilistic approach. Food Additives and Contaminants: Part A 35:1739–1748.

    Article  CAS  Google Scholar 

  • Shuring JB. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society B 273:1–9.

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM. 1979. Decomposition in terrestrial ecosystems. Berkeley and Los Angeles, CA: University of California Press.

    Google Scholar 

  • Valente AM, Acevedo P, Figueiredo AM, Fonseca C, Torres RT. 2020. Overabundant wild ungulate populations in Europe: management with consideration of socio-ecological consequences. Mammal Review 50:353–366.

    Article  Google Scholar 

  • Veen C, Fry E, ten Hooven F, Kardol P, Morriën E, De Long JR. 2019. The role of plant litter in driving plant-soil feedbacks. Frontiers in Environmental Science 7:168.

    Article  Google Scholar 

  • Vicente J, Carrasco R, Acevedo P, Montoro V, Gortazar C. 2011. Big game waste production: sanitary and ecological implications. integrated waste management – Volume II (ed. by S. Kumar), pp. 97–128. InTech, Rijeka, Croatia.

  • Vucetich JA, Peterson RO, Schaefer CL. 2002. The effect of prey and predator densities on wolf predation. Ecology 83:3003–3013.

    Article  Google Scholar 

  • Watson JE, Venter O, Lee J, Jones KR, Robinson JG, Possingham HP, Allan JR. 2018. Protect the last of the wild. Nature 563:27–30.

    Article  CAS  PubMed  Google Scholar 

  • Wilmers CC, Getz WM. 2004. Simulating the effects of wolf-elk population dynamics on resource flow to scavengers. Ecological Modelling 177:193–208.

    Article  Google Scholar 

  • Wilson EE, Wolkovich EM. 2011. Scavenging: how carnivores and carrion structure communities. Trends in Ecology and Evolution 26:129–135.

    Article  PubMed  Google Scholar 

  • Zhou X, He Z, Ding F, Li L, Stoffella PJ. 2018. Biomass decaying and elemental release of aquatic macrophyte detritus in waterways of the Indian River Lagoon basin, South Florida, USA. Science of the Total Environment 635:878–891.

    Article  CAS  PubMed  Google Scholar 

  • Zuberogoitia I, del Real J, Torres JJ, Rodríguez L, Alonso M, Zabala J. 2014. Ungulate vehicle collisions in a peri-urban environment: consequences of transportation infrastructures planned assuming the absence of Ungulates. PLoS ONE 9:e107713.

Download references

Acknowledgements

We are very grateful to Antonio Saénz de Santamaria, who gave us the data of ungulate roadkills in Spain. JM was supported by a Basque Government predoctoral grant (PRE_2018_2_0112), ACA by a contract Juan de la Cierva Incorporación (IJCI-2014-20744; Spanish Ministry of Economy and Competitiveness, Spain) and a Post Doc contract Programa Viçent Mut of Govern Balear (PD/039/2017, Spain), MM by a Ramón y Cajal research contract from the MINECO (RYC-2015-19231), ZMR and LNA by contracts cofounded by the Generalitat Valenciana and the European Social Fund (APOSTD/2019/016 and ACIF/2019/056, respectively), and by a Ramón y Cajal research contract from the MINECO (RYC-2019-027216-I) and by the Generalitat Valenciana (SEJI/2018/024). This study was partially funded by the Spanish Ministry of Economy, Industry and Competitiveness and EU ERDF funds through the projects RTI2018-099609-B-C21, CIAGRO-UMH, and CGL2017-89905-R

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Morant.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this research work

Additional information

Author contributions: JM, EA, and ESG conceived the initial idea and designed work schemes; JM performed all the analyses, figures, tables, and appendices, and led the writing, with significant contributions from JAZS, JAD, MM, and ACA. All remaining authors (PLL, HRV, IZ, ZMR and LNA) contributed to the literature review and reviewed manuscript drafts. All authors gave final approval for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 182 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morant, J., Arrondo, E., Cortés-Avizanda, A. et al. Large-Scale Quantification and Correlates of Ungulate Carrion Production in the Anthropocene. Ecosystems 26, 383–396 (2023). https://doi.org/10.1007/s10021-022-00763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00763-8

Keywords

Navigation