ABMI. 2019. Wall-to-Wall Human Footprint Inventory 2017. Edmonton, Alberta https://abmi.ca/home/data-analytics/da-top/da-product-overview/Human-Footprint-Products/HF-inventory.html
ABMI. 2021. Wall-to_Wall Climate variables 1961–1990. https://abmi.ca/home/data-analytics/da-top/da-product-overview/Other-Geospatial-Land-Surface-Data/Climate-Variables.html
Agriculture and Agri-Food Canada. 2015. Land Use 2010. https://www.agr.gc.ca/atlas/landu
Alexander RB, Boyer EW, Smith RA, Schwarz GE, Moore RB. 2007. The role of headwater streams in downstream water quality 1. JAWRA J Amer Water Resour Assoc 43(1):41–59.
CAS
Google Scholar
Babiarz C, Hoffmann S, Wieben A, Hurley J, Andren A, Shafer M, Armstrong D. 2012. Watershed and discharge influences on the phase distribution and tributary loading of total mercury and methylmercury into Lake Superior. Environ Pollut 161:299–310. https://doi.org/10.1016/j.envpol.2011.09.026.
CAS
Article
PubMed
Google Scholar
Babiarz CL, Hurley JP, Benoit JM, Shafer MM, Andren AW, Webb DA. 1998. Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watersheds. Biogeochemistry 41:237–257.
CAS
Google Scholar
Balogh SJ, Huang Y, Offerman HJ, Meyer ML, Johnson DK. 2003. Methylmercury in rivers draining cultivated watersheds. Sci Total Environ 304:305–313.
CAS
PubMed
Google Scholar
Balogh SJ, Meyer ML, Johnson DK. 1998. Transport of mercury in three contrasting river basins. Environ Sci Technol 32:456–462.
CAS
Google Scholar
Balogh SJ, Nollet YH, Offerman HJ. 2005. A comparison of total mercury and methylmercury export from various Minnesota watersheds. Sci Total Environ 340:261–270.
CAS
PubMed
Google Scholar
Bodaly RA, Rudd JWM, Fudge RJP, Kelly CA. 1993. Mercury concentrations in fish related to size of remote Canadian Shield lakes. Canadian J Fisheries Aquatic Sci 50(5):980–987.
CAS
Google Scholar
Bookman R, Driscoll CT, Engstrom DR, Effler SW. 2008. Local to regional emission sources affecting mercury fluxes to New York lakes. Atmos Environ 42:6088–6097.
CAS
Google Scholar
Bradley PM, Journey CA, Brigham ME, Burns DA, Button DT, Riva-Murray K. 2013. Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates. Environ Pollut 172:42–52. https://doi.org/10.1016/j.envpol.2012.08.008.
CAS
Article
PubMed
Google Scholar
Branfireun BA, Bishop K, Roulet NT, Granberg G, Nilsson M. 2001. Mercury cycling in boreal ecosystems: The long-term effect of acid rain constituents on peatland pore water methylmercury concentrations. Geophys Res Lett 28:1227–1230.
CAS
Google Scholar
Bravo AG, Cosio C, Amouroux D, Zopfi J, Chevalley PA, Spangenberg JE, Ungureanu VG, Dominik J. 2014. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Research 49:391–405.
CAS
PubMed
Google Scholar
Brinkmann L, Rasmussen JB. 2012. Elevated mercury levels in biota along an agricultural land use gradient in the Oldman River basin, Alberta. Can J Fish Aquat Sci 69(7):1202-1213.
CAS
Google Scholar
Buendia C, Vericat D, Batalla RJ, Gibbins CN. 2016. Temporal Dynamics of Sediment Transport and Transient In-channel Storage in a Highly Erodible Catchment. L Degrad Dev 27:1045–63. https://doi.org/10.1002/ldr.2348. Last accessed 30/05/2019
Bushey JT, Driscoll CT, Mitchell MJ, Selvendiran P, Montesdeoca MR. 2008. Mercury transport in response to storm events from a northern forest landscape. Hydrol Process Int J, 22(25):4813–4826.
CAS
Google Scholar
CCME. 2003. Canadian water quality guidelines for the protection of aquatic life: Inorganic mercury and methylmercury. In: Environment. CC of M of the, editor. Canadian environmental quality guidelines, 1999. Winnipeg http://ceqg-rcqe.ccme.ca/download/en/191
Devito K, Mendoza C, Qualizza C. 2012. Conceptualizing water movement in the Boreal Plains. Implications for watershed reconstruction. Synthesis report preapred for the Canadian Oil Sands Network for Research and Developement. :164.
Donadt C, Cooke CA, Graydon JA, Poesch MS. 2021. Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed. Chemosphere 262:128059.
CAS
PubMed
Google Scholar
Eagles-Smith CA, Ackerman JT, Willacker JJ, Tate MT, Lutz MA, Fleck JA, Stewart AR, Wiener JG, Evers DC, Lepak JM, Davis JA. 2016. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. Sci Total Environ 568:1171–1184.
CAS
PubMed
Google Scholar
Eckley CS, Parsons MT, Mintz R, Lapalme M, Mazur M, Tordon R, Elleman R, Graydon JA, Blanchard P, St Louis V. 2013. Impact of closing Canada’s largest point-source of mercury emissions on local atmospheric mercury concentrations. Environ Sci Technol 47:10339–10348.
CAS
PubMed
Google Scholar
Environment and Climate Change Canada. 2018. Canadian Climate Normals 1981–2010. http://climate.weather.gc.ca/climate_normals/. Last accessed 14/02/2018
Gamby RL, Hammerschmidt CR, Costello DM, Lamborg CH, Runkle JR. 2015. Deforestation and cultivation mobilize mercury from topsoil. Sci Total Environ 532:467–473.
CAS
PubMed
Google Scholar
Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyler D. 2002. The national elevation dataset. Photogramm Eng Remote Sens 68(1):5–32.
Google Scholar
Gibson JJ, Yi Y, Birks SJ. 2016. Isotope-based partitioning of streamflow in the oil sands region, northern Alberta: Towards a monitoring strategy for assessing flow sources and water quality controls. J Hydrol Reg Stud 5:131–48. https://linkinghub.elsevier.com/retrieve/pii/S2214581815002141. Last accessed 30/05/2019
Government of Alberta. 2019. Fish Consumption Guidance: mercury in Fish. Edmonton, Alberta
Grigal DF. 2002. Inputs and outputs of mercury from terrestrial watersheds: A review. Environ Rev 10:1–39.
CAS
Google Scholar
Guentzel JL. 2009. Wetland influences on mercury transport and bioaccumulation in South Carolina. Sci Total Environ 407(4):1344–1353.
CAS
PubMed
Google Scholar
Harris RC, Rudd JWM, Amyot M, Babiarz CL, Beaty KG, Blanchfield PJ, Bodaly RA, Branfireun BA, Gilmour CC, Graydon JA, Heyes A, Hintelmann H, Hurley JP, Kelly CA, Krabbenhoft DP, Lindberg SE, Mason RP, Paterson MJ, Podemski CL, Robinson A, Sandilands KA, St. Southworthn GR, Louis VL, Tate MT. 2007. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc Natl Acad Sci USA 104:16586–91.
CAS
PubMed
PubMed Central
Google Scholar
Harvey J, Gooseff M. 2015. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Res Research 51(9):6893–6922.
Google Scholar
Hawkings JR, Linhoff BS, Wadham JL, Stibal M, Lamborg CH, Carling GT, Lamarche-Gagnon G, Kohler TJ, Ward R, Hendry KR, Falteisek L. 2021. Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. Nat Geosci 14(7):496–502.
CAS
Google Scholar
Haynes KM, Mitchell CPJ. 2012. Inter-annual and spatial variability in hillslope runoff and mercury flux during spring snowmelt. J Environ Monit 14:2083–2091.
CAS
PubMed
Google Scholar
Homer C, Dewitz J, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold N, Wickham J, Megown K. 2015. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogramm Eng Remote Sens 81(5):345–354.
Google Scholar
Hsu-Kim H, Eckley CS, Achá D, Feng X, Gilmour CC, Jonsson S, Mitchell CP. 2018. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47(2):141–169.
PubMed
PubMed Central
Google Scholar
Hurley JP, Benoit JM, Babiarz CL, Shafer MM, Andren AW, Van JRS, Hammond R, Webb DA. 1995. Influences of Watershed Characteristics on Mercury Levels in Wisconsin Rivers. Environ Sci Technol 29:1867–1875.
CAS
PubMed
Google Scholar
Jiang T, Bravo AG, Skyllberg U, Björn E, Wang D, Yan H, Green NW. 2018. Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China. Water Research 146:146–158.
CAS
PubMed
Google Scholar
Kamman NC, Burgess NM, Driscoll CT, Simonin HA, Goodale W, Linehan J, Estabrook R, Hutcheson M, Major A, Scheuhammer AM, Scruton DA. 2005. Mercury in freshwater fish of northeast North America–a geographic perspective based on fish tissue monitoring databases. Ecotoxicol 14(1):163–180.
CAS
Google Scholar
Kasper D, Forsberg BR, Amaral JHF, Py-Daniel SS, Bastos WR, Malm O. 2017. Methylmercury Modulation in Amazon Rivers Linked to Basin Characteristics and Seasonal Flood-Pulse. Environ Sci Technol 51:14182–14191.
CAS
PubMed
Google Scholar
Kelly EN, Schindler DW, St. Louis VL, Donald DB, Vladicka KE. 2006. Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proc Natl Acad Sci 103:19380–5. https://doi.org/10.1073/pnas.0609798104. Last accessed 30/05/2019
Kerfoot WC, Harting SL, Rossmann R, Robbins JA. 2002. Elemental mercury in copper, silver and gold ores: an unexpected contribution to Lake Superior sediments with global implications. Geochem Explor Environ Anal 2(2):185–202.
CAS
Google Scholar
Kerr JG, Cooke CA. 2017. Erosion of the Alberta badlands produces highly variable and elevated heavy metal concentrations in the Red Deer River, Alberta. Sci Total Environ 596–597:427–436. https://doi.org/10.1016/j.scitotenv.2017.04.037.
CAS
Article
PubMed
Google Scholar
Kienzle SW. 2012. Water Yield and Streamflow Trend Analysis for Alberta Watersheds. https://albertawater.com/water-yield-streamflow-analysis
Kinghorn A, Solomon P, Chan HM. 2007. Temporal and spatial trends of mercury in fish collected in the English–Wabigoon river system in Ontario, Canada. Sci Total Environ 372(2–3):615–623.
CAS
Article
PubMed
Google Scholar
Kirk, Jane L, Vincent L, St. Louis. 2009. Multiyear total and methyl mercury exports from two major sub-Arctic rivers draining into Hudson Bay, Canada. Environ Sci Technol 43(7):2254–2261.
CAS
PubMed
Google Scholar
Knighton D. 2014. Fluvial forms and processes: A new perspective.
Kort J, Collins M, Ditsch D. 1998. A review of soil erosion potential associated with biomass crops. Biomass and Bioener 14(4):351–359.
Google Scholar
Kronberg RM, Drott A, Jiskra M, Wiederhold JG, Björn E, Skyllberg U. 2016. Forest harvest contribution to Boreal freshwater methyl mercury load. Global Biogeochem Cycles 30:825–843.
CAS
Google Scholar
Lee G, Yu W, Jung K. 2013. Catchment-scale soil erosion and sediment yield simulation using a spatially distributed erosion model. Environ Earth Sci 70(1):33–47.
Google Scholar
Lim AG, Sonke JE, Krickov IV, Manasypov RM, Loiko SV, Pokrovsky OS. 2019. Enhanced particulate Hg export at the permafrost boundary, western Siberia. Environ Pollut 254:113083. https://doi.org/10.1016/j.envpol.2019.113083.
CAS
Article
PubMed
Google Scholar
Liu G, Cai Y, O’Driscoll N. 2011. Environmental Chemistry and Toxicology of Mercury.
Liu M, Zhang Q, Luo Y, Mason RP, Ge S, He Y, Yu C, Sa R, Cao H, Wang X, Chen L. 2018. Impact of water-induced soil erosion on the terrestrial transport and atmospheric emission of mercury in China. Environ Sci Technol 52(12):6945–6956.
CAS
PubMed
PubMed Central
Google Scholar
Lyons WB, Fitzgibbon TO, Welch KA, Carey AE. 2006. Mercury geochemistry of the Scioto River, Ohio: Impact of agriculture and urbanization. Appl Geochemistry 21:1880–1888.
CAS
Google Scholar
Marusczak N, Larose C, Dommergue A, Paquet S, Beaulne JS, Maury-Brachet R, Lucotte M, Nedjai R, Ferrari CP. 2011. Mercury and methylmercury concentrations in high altitude lakes and fish (Arctic charr) from the French Alps related to watershed characteristics. Sci Total Environ 409(10):1909–1915.
CAS
Article
PubMed
Google Scholar
Mason RP, Reinfelder JR, Morel FMM. 1996. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ Sci Technol.
Mattieu CA, Furl CV, Roberts TM, Friese M. 2013. Spatial trends and factors affecting mercury bioaccumulation in freshwater fishes of Washington State, USA. Archiv Environ Contamin Toxicol 65(1):122–131.
Google Scholar
Naik AP, Hammerschmidt CR. 2011. Mercury and trace metal partitioning and fluxes in suburban Southwest Ohio watersheds. Water Res 45:5151–5160. https://doi.org/10.1016/j.watres.2011.07.023.
CAS
Article
PubMed
Google Scholar
Natural Resources Canada. 2013. Canadian Digital Elevation Model. Ottawa https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333
Newton BW, Farjad B, Orwin JF. 2021. Spatial and temporal shifts in historic and future temperature and precipitation patterns related to snow accumulation and melt regimes in Alberta, Canada. Water 13(8):1013.
Google Scholar
Orihel DM, Paterson MJ, Blanchfield PJ, Bodaly RA, Hintelmann H. 2007. Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota. Environ Sci Technol 41(14):4952–4958.
CAS
PubMed
Google Scholar
Oswald CJ, Branfireun BA. 2014. Antecedent moisture conditions control mercury and dissolved organic carbon concentration dynamics in a boreal headwater catchment. Water Resour Res 50(8):6610–6627.
CAS
Google Scholar
Park JH, Wang JJ, Xiao R, Pensky SM, Kongchum M, DeLaune RD, Seo DC. 2018. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands. Chemos 195:455–462.
CAS
Google Scholar
Riscassi AL, Hokanson KJ, Scanlon TM. 2011. Streamwater particulate mercury and suspended sediment dynamics in a forested headwater catchment. Water Air Soil Pollut 220:23–36.
CAS
Google Scholar
Rood SB, Samuelson GM, Weber JK, Wywrot KA. 2005. Twentieth-century decline in streamflows from the hydrographic apex of North America. J Hydrol 306(1–4):215–233.
Google Scholar
Rose J, Hutcheson MS, West CR, Pancorbo O, Hulme K, Cooperman A, Decesare G, Isaac R, Screpetis A. 1999. Fish mercury distribution in Massachusetts, USA lakes. Environ Toxicol Chem Inter J 18(7):1370–1379.
CAS
Google Scholar
Rudd JW, Bodaly RA, Fisher NS, Kelly CA, Kopec D, Whipple C. 2018. Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot Estuary sustains high mercury in biota. Sci Total Environ 642:1340–1352.
CAS
PubMed
Google Scholar
Ruzycki EM, Axler RP, Henneck JR, Will NR, Host GE. 2011. Estimating mercury concentrations and loads from four western Lake Superior watersheds using continuous in-stream turbidity monitoring. Aquat Ecosyst Heal Manag 14:422–432.
CAS
Google Scholar
Rypel AL. 2010. Mercury concentrations in lentic fish populations related to ecosystem and watershed characteristics. Ambio 39(1):14–19.
CAS
PubMed
PubMed Central
Google Scholar
Schlesinger WH, Reckhow KH, Bernhardt ES. 2006. Global change: The nitrogen cycle and rivers. Water Resources Research, 42(3).
Schuster PF, Striegl RG, Aiken GR, Krabbenhoft DP, Dewild JF, Butler K, Kamark B, Dornblaser M. 2011. Mercury export from the Yukon River Basin and potential response to a changing climate. Environ Sci Technol 45:9262–9267.
CAS
PubMed
Google Scholar
Shanley JB, Kamman NC, Clair TA, Chalmers A. 2005. Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA. ECOTOXICOLOGY 14:125–134.
CAS
PubMed
Google Scholar
Sherriff SC, Rowan JS, Fenton O, Jordan P, Melland AR, Mellander PE, Huallachain DO. 2016. Storm event suspended sediment-discharge hysteresis and controls in agricultural watersheds: implications for watershed scale sediment management. Environ Sci Technol 50(4):1769–1778.
CAS
PubMed
Google Scholar
Shrestha NK, Wang J. 2018. Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate. Sci Total Environ 625:1030–1045.
CAS
PubMed
Google Scholar
Soil Classification Working Group, 1998. The Canadian system of soil classification. Agriculture and agri-food Canada publication, 1646, p.187.
St Louis VL, Rudd JWM, Kelly CA, Beaty KG, Bloom NS, Flett RJ. 1994. Importance of wetlands as sources of methyl mercury to boreal forest ecosystems. Can J Fish Aquat Sci 51:1065–1076.
CAS
Google Scholar
St Pierre KA, St Louis VL, Lehnherr I, Gardner AS, Serbu JA, Mortimer CA, Muir DCG, Wiklund JA, Lemire D, Szostek L, Talbot C. 2019. Drivers of Mercury Cycling in the Rapidly Changing Glacierized Watershed of the High Arctic’s Largest Lake by Volume (Lake Hazen, Nunavut, Canada). Environ Sci Technol 53:1175–1185.
CAS
PubMed
Google Scholar
Staniszewska KJ, Cooke CA, Reyes AV. 2020. Quantifying Meltwater Sources and Contaminant Fluxes from the Athabasca Glacier, Canada. ACS Earth Space Chem 5(1):23–32.
Google Scholar
Steffen A, Morrison H. 2016. Canadian Mercury Science Assessment.
Temnerud J, Bishop K. 2005. Spatial variation of streamwater chemistry in two Swedish boreal catchments: Implications for environmental assessment. Environ Sci Technol 39:1463–1469.
CAS
PubMed
Google Scholar
U.S. Environmental Protection Agency. 1996. Method 1669, Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels. Washington, D.C.
U.S. Environmental Protection Agency. 1998. Method 1630, Methyl Mercury in Water by Distillations, Aqueoius Ethylation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. Washington, D.C.
U.S. Environmental Protection Agency. 2002. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. Washington, D.C.
U.S. Environmental Protection Agency. 2020. Fish and Shellfish Advisories and Safe Eating Guidelines. Environ Prot Agency. https://www.epa.gov/choose-fish-and-shellfish-wisely/fish-and-shellfish-advisories-and-safe-eating-guidelines. Last accessed 23/12/2020
Ullrich SM, Tanton TW, Abdrashitova SA. 2001. Mercury in the aquatic environment: a review of factors affecting methylation. Critical Rev Environ Sci Technol 31(3):241–293.
CAS
Google Scholar
Vermilyea AW, Nagorski SA, Lamborg CH, Hood EW, Scott D, Swarr GJ. 2017. Continuous proxy measurements reveal large mercury fluxes from glacial and forested watersheds in Alaska. Sci Total Environ 599–600:145–155. https://doi.org/10.1016/j.scitotenv.2017.03.297.
CAS
Article
PubMed
Google Scholar
Wall GR, Ingleston HH, Litten S. 2005. Calculating mercury loading to the tidal Hudson River, New York, using rating curve and surrogate methodologies. Water Air Soil Pollut 165:233–248.
CAS
Google Scholar
Warner KA, Bonzongo JCJ, Roden EE, Ward GM, Green AC, Chaubey I, Lyons WB, Arrington DA. 2005. Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA. Sci Total Environ 347(1–3):187–207.
CAS
PubMed
Google Scholar
Warner KA, Bonzongo JCJ, Roden EE, Ward GM, Green AC, Chaubey I, Lyons WB, Arrington DA. 2005. Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA. Sci Total Environ 347:187–207.
CAS
PubMed
Google Scholar
Wasiuta V, Kirk JL, Chambers PA, Alexander AC, Wyatt FR, Rooney RC, Cooke CA. 2019. Accumulating Mercury and Methylmercury Burdens in Watersheds Impacted by Oil Sands Pollution. Environ Sci Technol 53:12856–12864.
CAS
PubMed
Google Scholar
Water Survey of Canada. 2021. Archived hydrometric data. http://www.wateroffice.ec.gc.ca/. Last accessed 01/07/2021
Watras CJ, Morrison KA, Host JS, Bloom NS. 1995. Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakes. Limnol Oceanogr 40:556–565.
CAS
Google Scholar
Zolkos S, Krabbenhoft DP, Suslova A, Tank SE, McClelland JW, Spencer RGM, Shiklomanov A, Zhulidov AV, Gurtovaya T, Zimov N, Zimov S, Mutter EA, Kutny L, Amos E, Holmes RM. 2020. Mercury Export from Arctic Great Rivers. Environ Sci Technol 54:4140–4148.
CAS
PubMed
Google Scholar