Bagshaw EA, Wadham JL, Tranter M, Perkins R, Morgan A, Williamson CJ, Fountain AG, Fitzsimons S, Dubnick A. 2016. Response of Antarctic cryoconite microbial communities to light. FEMS Microbiology Ecology: 92.
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM. 2017. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9: 378–400. https://journal.r-project.org/archive/2017/RJ-2017-066/index.html
Cameron KA, Hodson AJ, Osborn M. 2012. Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities. Polar Biology 35:1375–1393.
Article
Google Scholar
Canfield DE. 1994. Factors influencing organic carbon preservation in marine sediments. Chemical Geology 114:315–329.
CAS
Article
Google Scholar
Chapin FS III, Randerson JT, McGuire AD, Foley JA, Field CB. 2008. Changing feedbacks in the climate–biosphere system. Frontiers in Ecology and the Environment 6:313–320.
Article
Google Scholar
Coesel PFM, Meesters KJ. 2007. Desmids of the Lowlands. Mesotaeniaceae and Desmidiaceae of the European Lowlands: KNNV Publishing, zeist, the Netherlands. p 351p.
Book
Google Scholar
Cook JM, Tedstone AJ, Williamson C, McCutcheon J, Hodson AJ, Dayal A, Skiles M, Hofer S, Bryant R, McAree O, McGonigle A, Ryan J, Anesio AM, Irvine-Fynn TDL, Hubbard A, Hanna A, Flanner M, Mayanna S, Benning LG, van As D, Yallop M, McQuaid JB, Gribbin T, Tranter M. 2020. Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet. The Cryosphere 14:309–330.
Article
Google Scholar
Edwards A, Pachebat JA, Swain M, Hegarty M, Hodson AJ, Irvine-Fynn TD, Rassner SME, Sattler B. 2013. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environmental Research Letters 8: 035003.
Fountain AG, Tranter M, Nylen TH, Lewis KJ, Mueller DR. 2004. Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. Journal of Glaciology 50:35–45.
Article
Google Scholar
Franzetti A, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Mayer C, Azzoni RS, Diolaiuti G, Smiraglia C, Ambrosini R. 2016. Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces. The ISME Journal 10:2984–2988.
CAS
Article
Google Scholar
Hedges JI, Keil RG. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49:81–115.
CAS
Article
Google Scholar
Henrichs SM, Reeburgh WS. 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal 5:191–237.
CAS
Article
Google Scholar
Hindák F. 1996. Key to the unbranched filamentous green algae (Ulotrichineae, Ulotrichales, Chlorophyceae). Bulletin Slovenskej botanickej spoločnosti pri SAV. Bratislava. 77p.
Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B. 2008. Glacial ecosystems. Ecological Monographs 78:41–67.
Article
Google Scholar
Hulthe G, Hulth S, Hall PO. 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochimica Et Cosmochimica Acta 62:1319–1328.
CAS
Article
Google Scholar
Jiang J. 2007. Linear and generalized linear mixed models and their applications. New York, USA: Springer. p 257p.
Google Scholar
Kaplan JO, New M. 2006. Arctic climate change with a 2 °C global warming: Timing, climate patterns and vegetation change. Climatic Change 79:213–241.
CAS
Article
Google Scholar
Komárek J, Anagnostidis K. 2005. Cyanoprocaryota; Oscillatoriales II. A. B. Büdel, L. Krienitz, G. Gärtner, & M. Schagerl, editors. Süβwasserfora von Mitteleuropa 19. Müchen: Spektrum Akademischer Verlag. p1–759.
Kristensen E, Ahmed SI, Devol AH. 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnology and Oceanography 40:1430–1437.
CAS
Article
Google Scholar
Margesin R, Zacke G, Schinner F. 2002. Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arctic, Antarctic, and Alpine Research 34:88–93.
Article
Google Scholar
McCutcheon J, Lutz S, Williamson C, Cook JM, Tedstone AJ, Vanderstraeten A, Wilson SA, Stockdale A, Bonneville S, Anesio AM, Yallop ML, McQuaid JB, Tranter M, Benning LG. 2021. Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet. Nature Communications 12:1–11.
Article
Google Scholar
McIntyre NF. 1984. Cryoconite hole thermodynamics. Canadian Journal of Earth Sciences 21:152–156.
Article
Google Scholar
Mulholland PJ, Houser JN, Maloney KO. 2005. Stream diurnal dissolved oxygen profiles as indicators of in-stream metabolism and disturbance effects: Fort Benning as a case study. Ecological Indicators 5:243–252.
CAS
Article
Google Scholar
Odum HT. 1956. Primary production in flowing waters 1. Limnology and Oceanography 1:102–117.
Article
Google Scholar
Pautler BG, Dubnick A, Sharp MJ, Simpson AJ, Simpson MJ. 2013. Comparison of cryoconite organic matter composition from Arctic and Antarctic glaciers at the molecular-level. Geochimica Et Cosmochimica Acta 104:1–18.
CAS
Article
Google Scholar
Pedersen TF, Shimmield GB, Price NB. 1992. Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman Margin. Geochimica Et Cosmochimica Acta 56:545–551.
CAS
Article
Google Scholar
Perkins RG, Bagshaw E, Mol L, Williamson CJ, Fagan D, Gamble M, Yallop ML. 2017. Photoacclimation by Arctic cryoconite phototrophs. FEMS microbiology ecology 93: fix018.
Pittino F, Maglio M, Gandolfi I, Azzoni RS, Diolaiuti G, Ambrosini R, Franzetti A. 2018. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability. Annals of Glaciology 59:1–9.
Article
Google Scholar
Pliński M, Picińska J, Targoński L. 1984. Method defining the biomass of marine phytoplankton by means of computers. Zeszyty Naukowe Wydziału Biologii i Nauk o Ziemii Uniwersytety Gdańskiego 10:129–155.
Google Scholar
Poniecka EA, Bagshaw EA, Sass H, Segar A, Webster G, Williamson C, Anesio AM, Tranter M. 2020. Physiological capabilities of cryoconite hole microorganisms. Frontiers in Microbiology 11:1783.
Article
Google Scholar
Poniecka EA, Bagshaw EA, Tranter M, Sass H, Williamson CJ, Anesio AM, Black and Bloom Team. 2018. Rapid development of anoxic niches in supraglacial ecosystems. Arctic, Antarctic, and Alpine Research 50:S100015.
Article
Google Scholar
Plass GN. 1956. The carbon dioxide theory of climatic change. Tellus 8:140–154.
Article
Google Scholar
Qu J, Sun Y, Awasthi MK, Liu Y, Xu X, Meng X, Zhang H. 2021. Effect of different aerobic hydrolysis time on the anaerobic digestion characteristics and energy consumption analysis. Bioresource Technology: 320, 124332.
R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Reddy KR, Patrick WH Jr. 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry 7:87–94.
CAS
Article
Google Scholar
Revsbech NP. 2021. Simple sensors that work in diverse natural environments: The micro-Clark sensor and biosensor family. Sensors and Actuators B: Chemical 329: 129168.
Rozwalak P, Podkowa P, Buda J, Niedzielski P, Kawecki S, Ambrosini R, Azzoni RS, Baccolo G, Ceballos JL, Cook J, Di Mauro B, Ficetola GF, Franzetti A, Ignatiuk D, Klimaszyk P, Łokas E, Ono M, Parnikoza I, Pietryka M, Pittino F, Poniecka E, Porazinska DL, Richter D, Schmidt SK, Sommers P, Souza-Kasprzyk J, Stibal M, Szczuciński W, Uetake J, Wejnerowski Ł, Yde JC, Takeuchi N, Zawierucha, K. 2021. Cryoconite–From minerals and organic matter to bioengineered sediments on glacier's surfaces. Science of The Total Environment 150874.
Sanyal A, Antony R, Samui G, Thamban M. 2018. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiological Research 208:32–42.
CAS
Article
Google Scholar
Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 N). Polar Biology 25:591–596.
Article
Google Scholar
Segawa T, Takeuchi N, Mori H, Rathnayake RM, Li Z, Akiyoshi A, Satoh H, Ishii S. 2020. Redox stratification within cryoconite granules influences the nitrogen cycle on glaciers. FEMS Microbiology Ecology 96: fiaa199.
Segawa T, Yonezawa T, Edwards A, Akiyoshi A, Tanaka S, Uetake J, Irvine-Fynn T, Fukui K, Li Z, Takeuchi N. 2017. Biogeography of cryoconite forming cyanobacteria on polar and Asian glaciers. Journal of Biogeography 44:2849–2861.
Article
Google Scholar
Stibal M, Tranter M. 2007. Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. Journal of Geophysical Research: Biogeosciences: 112(G4).
Stibal M, Schostag M, Cameron KA, Hansen LH, Chandler DM, Wadham JL, Jacobsen CS. 2015. Different bulk and active bacterial communities in cryoconite from the margin and interior of the G reenland ice sheet. Environmental Microbiology Reports 7:293–300.
CAS
Article
Google Scholar
Telling J, Anesio AM, Tranter M, Stibal M, Hawkings J, Irvine-Fynn T, Hodson A, Butler C, Yallop M, Wadham J. 2012. Controls on the autochthonous production and respiration of organic matter in cryoconite holes on high Arctic glaciers. Journal of Geophysical Research: Biogeosciences 117(G1).
Wang Q, Li Y, Wang Y. 2011. Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources. Environmental Monitoring and Assessment 174:241–257.
CAS
Article
Google Scholar