Adamczyk B, Sietiö OM, Biasi C, Heinonsalo J. 2019. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. New Phytol 223:16–21.
PubMed
Google Scholar
Angst G, Mueller KE, Nierop KGJ, Simpson MJ. 2021. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol Biochem 156:108189. https://doi.org/10.1016/j.soilbio.2021.108189.
CAS
Article
Google Scholar
Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH. 2009. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. https://doi.org/10.1016/j.soilbio.2008.12.022.
CAS
Article
Google Scholar
Baeten L, Verheyen K, Wirth C, Bruelheide H, Bussotti F, Finér L, Jaroszewicz B, Selvi F, Valladares F, Allan E, Ampoorter E, Auge H, Avǎcǎriei D, Barbaro L, Bǎrnoaiea I, Bastias CC, Bauhus J, Beinhoff C, Benavides R, Benneter A, Berger S, Berthold F, Boberg J, Bonal D, Brüggemann W, Carnol M, Castagneyrol B, Charbonnier Y, Chećko E, Coomes D, Coppi A, Dalmaris E, Dǎnilǎ G, Dawud SM, de Vries W, De Wandeler H, Deconchat M, Domisch T, Duduman G, Fischer M, Fotelli M, Gessler A, Gimeno TE, Granier A, Grossiord C, Guyot V, Hantsch L, Hättenschwiler S, Hector A, Hermy M, Holland V, Jactel H, Joly FX, Jucker T, Kolb S, Koricheva J, Lexer MJ, Liebergesell M, Milligan H, Müller S, Muys B, Nguyen D, Nichiforel L, Pollastrini M, Proulx R, Rabasa S, Radoglou K, Ratcliffe S, Raulund-Rasmussen K, Seiferling I, Stenlid J, Vesterdal L, von Wilpert K, Zavala MA, Zielinski D, Scherer-Lorenzen M. 2013. A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect Plant Ecol Evol Syst 15:281–291.
Google Scholar
Barantal S, Roy J, Fromin N, Schimann H, Hättenschwiler S. 2011. Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest. Oecologia 167:241–252.
PubMed
Google Scholar
Barantal S, Schimann H, Fromin N. 2014. C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition. Proc R Soc B 281.
Bartoń K. 2019. MuMln: multi-model inference.
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.
Google Scholar
Bauhus J, Forrester DI, Pretzsch H. 2017. Mixed-species forests: The development of a forest management paradigm. In: Pretzsch H, Forrester DI, Bauhus J, editors. Mixed-species forests. Springer. pp 1–26.
Beidler KV, Pritchard SG. 2017. Maintaining connectivity: understanding the role of root order and mycelial networks in fine root decomposition of woody plants. Plant Soil 420:19–36.
CAS
Google Scholar
Berg B. 1984. Decomposition of root litter and some factors regulating the process: long-term root litter decomposition in a scots pine forest. Soil Biol Biochem 16:609–617.
CAS
Google Scholar
Berg B. 2014. Decomposition patterns for foliar litter—a theory for influencing factors. Soil Biol Biochem 78:222–232.
CAS
Google Scholar
Beyer F, Hertel D, Jung K, Fender AC, Leuschner C. 2013. Competition effects on fine root survival of Fagus sylvatica and Fraxinus excelsior. For Ecol Manag 302:14–22. https://doi.org/10.1016/j.foreco.2013.03.020.
Article
Google Scholar
Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317–323.
Google Scholar
Brant AN, Chen HYH. 2015. Patterns and mechanisms of nutrient resorption in plants. CRC Crit Rev Plant Sci 34:471–486. https://doi.org/10.1080/07352689.2015.1078611.
CAS
Article
Google Scholar
Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. New York: Springer-Verlag.
Google Scholar
Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW. 2013. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS One 8.
Chen H, Mommer L, Van Ruijven J, De Kroon H, Fischer C, Gessler A, Hildebrandt A, Scherer-Lorenzen M. 2017a. Plant species richness negatively affects root decomposition in grasslands. J Ecol 105:209–218.
CAS
Google Scholar
Chen H, Oram NJ, Barry KE, Mommer L, Van Ruijven J, Scheu S, Oelmann Y, Wagg C, Wilcke W, Wirth C. 2017b. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition. Oecologia 185:499–511.
PubMed
Google Scholar
Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Megan Steinweg J, Wallenstein MD, Martin Wetterstedt JÅ, Bradford MA. 2011. Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404.
Google Scholar
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob Change Biol 19:988–995.
Google Scholar
Dawud SM, Raulund-Rasmussen K, Domisch T, Finér L, Jaroszewicz B, Vesterdal L. 2016. Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems 19:645–660.
CAS
Google Scholar
Dawud SM, Raulund-Rasmussen K, Ratcliffe S, Domisch T, Finér L, Joly FX, Hättenschwiler S, Vesterdal L. 2017. Tree species functional group is a more important driver of soil properties than tree species diversity across major European forest types. Funct Ecol 31:1153–1162.
Google Scholar
Dornbush ME, Isenhart TM, Raich JW. 2002. Quantifying fine-root decomposition: an alternative to buried litterbags. Ecology 83:2985–2990.
Google Scholar
Fox J, Weisberg S. 2011. An {R} companion to applied regression, Second Edition. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
Frainer A, Moretti MS, Xu W, Gessner MO. 2015. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology 96:550–561.
PubMed
Google Scholar
Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC. 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J Ecol 101:943–952.
CAS
Google Scholar
Freschet GT, Pagès L, Iversen C, Comas L, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma J, Adams T, Bagniewska-Zadworna A, Bengough A, Blancaflor E, Brunner I, Cornelissen J, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon-Cochard C, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde-Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman S, Gomes de Moraes M, Janecek S, Lambers H, Salmon V, Tharayil N, McCormack M. 2020. A starting guide to root ecology: strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements. hal hal-029188.
Gartner TB, Cardon ZG. 2004. Decomposition dynamics in mixed-species leaf litter. OIKOS 104:230–246.
Google Scholar
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S. 2010. Diversity meets decomposition. Trends Ecol Evol 25:372–380. https://doi.org/10.1016/j.tree.2010.01.010.
Article
PubMed
Google Scholar
Gillespie LM, Hättenschwiler S, Milcu A, Wambsganss J, Shihan A, Fromin N. 2021. Tree species mixing affects soil microbial functioning indirectly via root and litter traits and soil parameters in European forests. Funct Ecol:1–15.
Goebel M, Hobbie S, Bulaj B, Zadworny M, Archibald D, Oleksyn J, Reich P, Eissenstat D. 2011. Decomposition of the finest root branching orders: Linking carbon and nutrient dynamics belowground to fine root function and structure. Ecol Monogr 81:89–102. https://doi.org/10.1890/09-2390.1.
Article
Google Scholar
Gordon WS, Jackson RB. 2000. Nutrient concentrations in fine roots. Ecology 81:275–280.
Google Scholar
Grossman JJ, Cavender-Bares J, Hobbie SE. 2020. Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecol Monogr 90:1–19.
Google Scholar
Gruselle MC, Bauhus J. 2010. Assessment of the species composition of forest floor horizons in mixed spruce-beech stands by Near Infrared Reflectance Spectroscopy (NIRS). Soil Biol Biochem 42:1347–1354.
CAS
Google Scholar
Guerrero-Ramírez NR, Craven D, Messier C, Potvin C, Turner BL, Handa IT. 2016. Root quality and decomposition environment, but not tree species richness, drive root decomposition in tropical forests. Plant Soil 404:125–139. https://doi.org/10.1007/s11104-016-2828-y.
CAS
Article
Google Scholar
Hättenschwiler S. 2005. Effects of tree species diversity on litter quality and quantity. In: Scherer-Lorenzen M, Körner C, Schulze E-D, Eds. Forest diversity and function: temperate and boreal systems, . Berlin Heidelberg: Springer. pp 149–164.
Google Scholar
Hättenschwiler S, Gasser P. 2005. Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci USA 102:1519–1524.
PubMed
PubMed Central
Google Scholar
Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218.
Google Scholar
Hättenschwiler S, Vitousek PM. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243.
PubMed
Google Scholar
Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH. 2000. Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371.
Google Scholar
Hobbie SE. 2015. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363. https://doi.org/10.1016/j.tree.2015.03.015.
Article
PubMed
PubMed Central
Google Scholar
Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB. 2010. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513.
PubMed
Google Scholar
Hobbie SE, Vitousek PM. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–1877.
Google Scholar
Jackson RB, Mooney HAA, Schulze E-DD. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci 94:7362–7366.
CAS
PubMed
PubMed Central
Google Scholar
Jaeger B. 2017. r2glmm: computes R squared for mixed (multilevel) models. https://cran.r-project.org/package=r2glmm
Jiang L, Kou L, Li S. 2019. Decomposition of leaf mixtures and absorptive-root mixtures synchronously changes with deposition of nitrogen and phosphorus. Soil Biol Biochem 138.
Jiang L, Wang H, Li S, Fu X, Dai X, Yan H, Kou L. 2020. Mycorrhizal and environmental controls over root trait–decomposition linkage of woody trees. New Phytol 229:284–295.
PubMed
Google Scholar
Joly FX, Milcu A, Scherer-Lorenzen M, Jean LK, Bussotti F, Dawud SM, Müller S, Pollastrini M, Raulund-Rasmussen K, Vesterdal L, Hättenschwiler S. 2017. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol 214:1281–1293.
CAS
PubMed
Google Scholar
Jucker T, Bouriaud O, Coomes DA. 2015. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct Ecol 29:1078–1086.
Google Scholar
Keiluweit M, Nico P, Harmon ME, Mao J, Pett-Ridge J, Kleber M. 2015. Long-term litter decomposition controlled by manganese redox cycling. Proc Natl Acad Sci 112:E5253–E5260. https://doi.org/10.1073/pnas.1508945112.
CAS
Article
PubMed
PubMed Central
Google Scholar
Korboulewsky N, Perez G, Chauvat M. 2016. How tree diversity affects soil fauna diversity: a review. Soil Biol Biochem 94:94–106. https://doi.org/10.1016/j.soilbio.2015.11.024.
CAS
Article
Google Scholar
Kou L, Jiang L, Hättenschwiler S, Zhang M, Niu S, Fu X, Dai X, Yan H, Li S, Wang H. 2020. Diversity-decomposition relationships in forests worldwide. Elife 9:1–51.
Google Scholar
Laliberté E, Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305.
PubMed
Google Scholar
Laliberté E, Legendre P, Shipley B. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology.
Langley AJ, Chapman SK, Hungate BA. 2006. Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett 9:955–959.
PubMed
Google Scholar
Leuschner C, Ellenberg H. 2017. Ecology of Central European Forests. Springer. https://doi.org/10.1007/978-3-319-43042-3
Li Y, Chen X, Veen CGF, Eisenhauer N, Liang Y, Zhou X, Zhang N, Ma K. 2018. Negative effects of litter richness on root decomposition in the presence of detritivores. Funct Ecol. https://doi.org/10.1111/1365-2435.13057.
Article
Google Scholar
Lin G, Zeng DH. 2018. Functional identity rather than functional diversity or species richness controls litter mixture decomposition in a subtropical forest. Plant Soil 428:179–193.
CAS
Google Scholar
Liu J, Liu X, Song Q, Compson ZG, LeRoy CJ, Luan F, Wang H, Hu Y, Yang Q. 2020. Synergistic effects: a common theme in mixed-species litter decomposition. New Phytol 227:757–765.
PubMed
Google Scholar
Loreau M. 1998. Separating sampling and other effects in biodiversity experiments. Nord Soc Oikos 82:600–602.
Google Scholar
Lummer D, Scheu S, Butenschoen O. 2012. Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures. Oikos 121:1649–1655.
CAS
Google Scholar
Makkonen M, Berg MP, Van Logtestijn RSP, Van Hal JR, Aerts R. 2013. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122:987–997.
Google Scholar
McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM. 2012. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–831. https://doi.org/10.1111/j.1469-8137.2012.04198.x.
Article
Google Scholar
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M. 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518.
PubMed
PubMed Central
Google Scholar
McTiernan KB, Ineson P, Coward PA. 1997. Respiration and nutrient release from tree leaf litter mixtures. Oikos 78:527.
Google Scholar
Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142.
Google Scholar
Neumann M, Godbold DL, Hirano Y, Finer L. 2021. Improving models of fine root carbon stocks and fluxes in European forests. J Ecol 108:1–19.
Google Scholar
Palmborg C, Scherer-Lorenzen M, Jumpponen A, Carlsson G, Huss-Danell K, Högberg P. 2005. Inorganic soil nitrogen under grassland plant communities of different species composition and diversity. Oikos 110:271–282.
CAS
Google Scholar
Peterson RA. 2017. bestNormalize: A suite of normalizing transformations. https://github.com/petersonR/bestNormalize
Pietikäinen J, Pettersson M, Bååth E. 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 52:49–58.
PubMed
Google Scholar
Porre RJ, van der Werf W, De Deyn GB, Stomph TJ, Hoffland E. 2020. Is litter decomposition enhanced in species mixtures? A meta anlaysis. Soil Biol Biochem 145:107791. https://doi.org/10.1016/j.soilbio.2020.107791.
CAS
Article
Google Scholar
Pregitzer KS. 2002. Fine roots of trees–a new perspective. New Phytol. https://doi.org/10.1046/j.1469-8137.2002.00413_1.x/full.
Article
PubMed
Google Scholar
Prescott CE, Grayston SJ. 2013. Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manage 309:19–27. https://doi.org/10.1016/j.foreco.2013.02.034.
Article
Google Scholar
Prieto I, Birouste M, Zamora-Ledezma E, Gentit A, Goldin J, Volaire F, Roumet C. 2017. Decomposition rates of fine roots from three herbaceous perennial species: combined effect of root mixture composition and living plant community. Plant Soil 415:359–372.
CAS
Google Scholar
R Core Team. 2018. R: A language and environment for statistical computing.
Reich PB, Luo Y, Bradford JB, Poorter H, Perry CH, Oleksyn J. 2014. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc Natl Acad Sci USA 111:13721–13726.
CAS
PubMed
PubMed Central
Google Scholar
Scheibe A, Steffens C, Seven J, Jacob A, Hertel D, Leuschner C, Gleixner G. 2015. Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biol Biochem 81:219–227. https://doi.org/10.1016/j.soilbio.2014.11.020.
CAS
Article
Google Scholar
Scherer-Lorenzen M. 2008. Functional diversity affects decomposition processes in experimental grasslands. Funct Ecol 22:547–555.
Google Scholar
Scherer-Lorenzen M. 2014. The functional role of biodiversity in the context of global change. In: Coomes DA, Burslem DFRP, Simonson WD, Eds. Forests and global change, . Cambridge University Press. pp 195–238.
Google Scholar
Schimel JP, Hättenschwiler S. 2007. Nitrogen transfer between decomposing leaves of different N status. Soil Biol Biochem 39:1428–1436.
CAS
Google Scholar
Schindler MH, Gessner MO. 2009. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90:1641–1649.
PubMed
Google Scholar
See CR, McCormack ML, Hobbie SE, Flores-Moreno H, Silver WL, Kennedy PG, Gessner M. 2019. Global patterns in fine root decomposition: climate, chemistry, mycorrhizal association and woodiness. Ecol Lett 22:946–953. https://doi.org/10.1111/ele.13248?af=R.
Article
PubMed
Google Scholar
Silver WL, Miya RK. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419. https://doi.org/10.1007/s004420100740.
Article
PubMed
PubMed Central
Google Scholar
Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore SE, Schrumpf M. 2014. Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382:203–218.
CAS
Google Scholar
Song X, Wang Z, Tang X, Xu D, Liu B, Mei J, Huang S, Huang G. 2020. The contributions of soil mesofauna to leaf and root litter decomposition of dominant plant species in grassland. Appl Soil Ecol 155:103651. https://doi.org/10.1016/j.apsoil.2020.103651.
Article
Google Scholar
Sun T, Dong L, Zhang L, Wu Z, Wang Q, Li Y, Zhang H, Wang Z. 2016. Early stage fine-root decomposition and its relationship with root order and soil depth in a Larix gmelinii plantation. Forests 7:1–10.
Google Scholar
Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, Wang Z, Hättenschwiler S. 2018. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc Natl Acad Sci USA 115:10392–10397.
CAS
PubMed
PubMed Central
Google Scholar
Sun T, Mao Z, Dong L, Hou L, Song Y, Wang X. 2013. Further evidence for slow decomposition of very fine roots using two methods: Litterbags and intact cores. Plant Soil 366:633–646.
CAS
Google Scholar
Swift MJ, Heal OW, Anderson JM. 1979. Decomposition in terrestrial ecosystems. Blackwell Scientific Publications
Tardif A, Shipley B. 2015. The relationship between functional dispersion of mixed-species leaf litter mixtures and species’ interactions during decomposition. Oikos 124:1050–1057.
Google Scholar
Tiunov AV. 2009. Particle size alters litter diversity effects on decomposition. Soil Biol Biochem 41:176–178. https://doi.org/10.1016/j.soilbio.2008.09.017.
CAS
Article
Google Scholar
Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P. 2013. Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manag 309:4–18. https://doi.org/10.1016/j.foreco.2013.01.017.
Article
Google Scholar
Vivanco L, Austin AT. 2006. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150:97–107.
PubMed
Google Scholar
Vivanco L, Austin AT. 2008. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736.
CAS
Google Scholar
Vos VCA, van Ruijven J, Berg MP, Peeters ETHM, Berendse F. 2013. Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia 173:269–280.
PubMed
Google Scholar
Wambsganss J, Beyer F, Freschet GT, Scherer-Lorenzen M, Bauhus J. 2021a. Tree species mixing reduces biomass but increases length of absorptive fine roots in European forests. J Ecol 109:2678–2691.
Google Scholar
Wambsganss J, Freschet GT, Beyer F, Goldmann K, Prada-Salcedo LD, Scherer-Lorenzen M, Bauhus J. 2021b. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct Ecol 35:1886–1902.
Google Scholar
Xiong Y, Fan P, Fu S, Zeng H, Guo D. 2013. Slow decomposition and limited nitrogen release by lower order roots in eight Chinese temperate and subtropical trees. Plant Soil 363:19–31.
CAS
Google Scholar
Zhang DQ, Hui DF, Luo YQ, Zhou GY. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93.
Google Scholar
Zhang X, Wang W. 2015. The decomposition of fine and coarse roots: their global patterns and controlling factors. Sci Rep 5:9940. https://doi.org/10.1038/srep09940.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou S, Butenschoen O, Barantal S, Handa IT, Makkonen M, Vos V, Aerts R, Berg MP, McKie B, Van Ruijven J, Hättenschwiler S, Scheu S. 2020. Decomposition of leaf litter mixtures across biomes: The role of litter identity, diversity and soil fauna. J Ecol 108:2283–2297.
Google Scholar
Zwetsloot MJ, Ucros JM, Wickings K, Wilhelm RC, Sparks J, Buckley DH, Bauerle TL. 2020. Prevalent root-derived phenolics drive shifts in microbial community composition and prime decomposition in forest soil. Soil Biol Biochem 145.