Skip to main content

Advertisement

Log in

A Warm Tea: The Role of Temperature and Hydroperiod on Litter Decomposition in Temporary Wetlands

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Increasing global temperature and changes in the precipitation regime affect the global carbon cycle by altering the process of organic matter decomposition. Temporary aquatic systems are especially susceptible to climate change. We hypothesized that water availability and temperature affect the early and late stages of decomposition of litter differently and determine the decomposition rates according to litter type. We conducted two decomposition experiments using green (Camellia sinensis L.) and mint (Mentha piperita L.) tea in commercial bags. In the laboratory experiment, we incubated the bags at two contrasting temperatures (4 and 15°C) and in three simulated hydroperiods (M: moist, MS: submerged after 14 days, S: submerged). A field experiment was carried out in winter and spring in nine temporary wetlands (meadows) along a precipitation gradient (from forest to steppe ecosystems) in the Argentinean Patagonia. Water stimulated the leaching of soluble substances in the S treatment and was the conducting factor in early decomposition stages. Temperature stimulated tea decomposition in advanced stages, and both water and temperature exerted a different response depending on the litter type. In the field experiment, mass loss in meadows was determined by the hydroperiod condition, both in winter and spring. Detritus type was the controlling factor in steppe meadows, but on forest meadows water level stimulated both litter types, and temperature increased decomposition. Under the expected increase of temperature and decrease of precipitations in future climate scenarios, organic matter accumulation would increase in steppe meadows and decomposition would be higher in forest meadows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The DOI associated with the data is: https://doi.org/10.17632/9v87x4jmwt.3, and the URL is: https://data.mendeley.com/drafts/9v87x4jmwt.

References

  • Abril M, Muñoz I, Menéndez M. 2016. Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation. Science of the Total Environment 553:330–339.

    Article  CAS  PubMed  Google Scholar 

  • Althuizen IH, Lee H, Sarneel JM, Vandvik V. 2018. Long-term climate regime modulates the impact of short-term climate variability on decomposition in alpine grassland soils. Ecosystems 21:1580–1592.

    Article  CAS  Google Scholar 

  • Anderson JT, Smith LM. 2002. The effect of flooding regimes on decomposition of Polygonum pensylvanicum in playa wetlands (Southern Great Plains, USA). Aquatic Botany 74:97–108.

    Article  Google Scholar 

  • APHA. 2005. Standard methods for the examination of water and wastewater.

  • Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V, Větrovský T, Zifčáková L, Snajdr J, Rídl J, Vlček C, Voříšková J. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal 6:248–258.

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Sarkar D, Bates MD, Matrix L. 2007. The lme4 package. R Package Version 2:74.

    Google Scholar 

  • Bates M, Venables B, Team MRC. 2011. Package ‘splines’. R Version 2: 1–15.

  • Battle JM, Golladay SW. 2001. Hydroperiod influence on breakdown of leaf litter in cypress-gum wetlands. The American Midland Naturalist 146:128–145.

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519–546.

    Article  CAS  PubMed  Google Scholar 

  • Bottino F, Cunha-Santino MB, Bianchini I. 2016. Decomposition of particulate organic carbon from aquatic macrophytes under different nutrient conditions. Aquatic Geochemistry 22:17–33.

    Article  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–1789.

    Article  Google Scholar 

  • Bruder A, Schindler MH, Moretti MS, Gessner MO. 2014. Litter decomposition in a temperate and a tropical stream: the effects of species mixing, litter quality and shredders. Freshwater Biology 59:438–449.

    Article  CAS  Google Scholar 

  • Buono G, Oesterheld M, Nakamatsu V, Paruelo JM. 2010. Spatial and temporal variation of primary production of Patagonian wet meadows. Journal of Arid Environments 74:1257–1261.

    Article  Google Scholar 

  • Chimner RA, Bonvissuto GL, Cremona MV, Gaitan JJ, López CR. 2011. Condiciones ecohidrológicas de humedales a lo largo de un gradiente de precipitación en la Patagonia, Argentina. Ecología Austral 21:329–337.

    Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065–1071.

    Article  PubMed  Google Scholar 

  • Coûteaux M-M, Bottner P, Berg B. 1995. Litter decomposition, climate and liter quality. Trends in Ecology & Evolution 10:63–66.

    Article  Google Scholar 

  • Crego RD, Nielsen CK, Didier KA. 2014. Climate change and conservation implications for wet meadows in dry Patagonia. Environmental Conservation 41:122–131.

    Article  Google Scholar 

  • Cuassolo F, Díaz-Villanueva V. 2019. Exóticas en humedales: Análisis de las comunidades vegetales de mallines naturales y urbanos en la ciudad de Bariloche. Ecología Austral 29:405–415.

    Article  Google Scholar 

  • Dang CK, Schindler M, Chauvet E, Gessner MO. 2009. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 90:122–131.

    Article  PubMed  Google Scholar 

  • Datry T, Corti R, Claret C, Philippe M. 2011. Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the “drying memory.” Aquatic Sciences 73:471–483.

    Article  Google Scholar 

  • Datry T, Foulquier A, Corti R, Von Schiller D, Tockner K, Mendoza-Lera C, Clement JC, Gessner MO, Moleon M, Stubbington R, Gücker B. 2018. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nature Geoscience 11:497–503.

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173.

    Article  CAS  PubMed  Google Scholar 

  • de Neiff AP, Neiff JJ, Casco SL. 2006. Leaf litter decomposition in three wetland types of the Paraná River floodplain. Wetlands 26:558–566.

    Article  Google Scholar 

  • Didion M, Repo A, Liski J, Forsius M, Bierbaumer M, Djukic I. 2016. Towards harmonizing leaf litter decomposition studies using standard tea bags—a field study and model application. Forests 7:167.

    Article  Google Scholar 

  • Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K. 2018. Early stage litter decomposition across biomes. Science of the Total Environment 628:1369–1394.

    Article  PubMed  Google Scholar 

  • Dossou-Yovo W, Parent S-É, Ziadi N, Parent É, Parent L-É. 2021. Tea Bag Index to Assess Carbon Decomposition Rate in Cranberry Agroecosystems. Soil Systems 5:44.

    Article  CAS  Google Scholar 

  • Ferreira V, Chauvet E. 2011. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 167:279–291.

    Article  PubMed  Google Scholar 

  • Follstad Shah JJ, Kominoski JS, Ardón M, Dodds WK, Gessner MO, Griffiths NA, Hawkins CP, Johnson SL, Lecerf A, LeRoy CJ, Manning DWP, Rosemond AD, Sinsabaugh RL, Swan CM, Webster JR, Zeglin LH. 2017. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Glob Chang Biol 23:3064–3075.

    Article  PubMed  Google Scholar 

  • Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, Firth D, Friendly M, Gorjanc G, Graves S, Heiberger R. 2012. Package ‘car’. Vienna: R Foundation for Statistical Computing 1–151.

  • García-Palacios P, McKie BG, Handa IT, Frainer A, Hättenschwiler S. 2016. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology 30:819–829.

    Article  Google Scholar 

  • Geraldes P, Pascoal C, Cássio F. 2012. Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology 5:734–740.

    Article  Google Scholar 

  • Glazebrook HS, Robertson AI. 1999. The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Australian Journal of Ecology 24:625–635.

    Article  Google Scholar 

  • Gonçalves AL, Graça MA, Canhoto C. 2013. The effect of temperature on leaf decomposition and diversity of associated aquatic hyphomycetes depends on the substrate. Fungal Ecology 6:546–553.

    Article  Google Scholar 

  • Graça M, Poquet J. 2014. Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia 174:1021–1032.

    Article  PubMed  Google Scholar 

  • Gusewell S, Freeman C. 2005. Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N:P ratios. Functional Ecology 19:582–593.

    Article  Google Scholar 

  • Hättenschwiler S, Jørgensen HB. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology 98:754–763.

    Article  Google Scholar 

  • Helsen K, Smith SW, Brunet J, Cousins SA, De Frenne P, Kimberley A, Kolb A, Lenoir J, Ma S, Michaelis J, Plue J. 2018. Impact of an invasive alien plant on litter decomposition along a latitudinal gradient. Ecosphere 9:1–15.

    Article  CAS  Google Scholar 

  • Iñiguez-Armijos C, Rausche S, Cueva A, Sánchez-Rodríguez A, Espinosa C, Breuer L. 2016. Shifts in leaf litter breakdown along a forest–pasture–urban gradient in Andean streams. Ecology and Evolution 6:4849–4865.

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC. 2007. Climate change 2007-impacts, adaptation and vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (M. Parry, M. L. Parry, O. Canziani, J. Palutikof, P. Van der Linden, C. Hanson Eds. Vol. 4). Cambridge, UK: Cambridge University Press.

  • Irisarri G, Oesterheld M, Paruelo J, Baldassini P, Arocena D, Oyarzabal M. 2012. Impacto de la erupción de volcán Puyehue y el déficit de precipitaciones sobre la producción de materia seca del suroeste de Río Negro. Informe técnico. Facultad de Agronomía UBA1-13.

  • Jaeger B. 2017. R2glmm: computes R squared for mixed (multilevel) models. R package version 0.1 2: 1–12.

  • Jobbágy EG, Paruelo JM, León RJ. 1995. Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecología Austral 5:047–053.

    Google Scholar 

  • Kandus P, Minotti P, Malvárez AI. 2008. Distribution of wetlands in Argentina estimated from soil charts. Acta Scientiarum. Biological Sciences 30:403–409.

    Article  Google Scholar 

  • Keuskamp JA, Dingemans BJ, Lehtinen T, Sarneel JM, Hefting MM. 2013. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution 4:1070–1075.

    Article  Google Scholar 

  • Kirschbaum MUF. 2006. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biology and Biochemistry 38:2510–2518.

    Article  CAS  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RH. 2017. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82:1–26.

    Article  Google Scholar 

  • Langhans SD, Tiegs SD, Gessner MO, Tockner K. 2008. Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquatic Sciences 70:337–346.

    Article  Google Scholar 

  • Langhans SD, Tockner K. 2006. The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147:501–509.

    Article  PubMed  Google Scholar 

  • Leberfinger K, Bohman I, Herrmann J. 2010. Drought impact on stream detritivores: experimental effects on leaf litter breakdown and life cycles. Hydrobiologia 652:247–254.

    Article  Google Scholar 

  • Lenth R, Lenth MR. 2018. Package ‘lsmeans.’ The American Statistician 34:216–221.

    Google Scholar 

  • Li X, Cui B, Yang Q, Lan Y, Wang T, Han Z. 2013. Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake, North China. Ecological Modelling 252:121–128.

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KG. 2007. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio (macro) molecules. Geoderma 142:1–10.

    Article  CAS  Google Scholar 

  • MacDonald E, Brummell ME, Bieniada A, Elliot J, Engering A, Gauthier TL, Saraswati S, Touchette S, Tourmel-Courchesne L, Strack M. 2018. Using the Tea Bag Index to characterize decomposition rates in restored peatlands. Boreal Environment Research 23:221–235.

    Google Scholar 

  • Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S. 2014. 2014: Central and South America. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, L. L. White Eds. Cambridge, United Kingdom and New York: Cambridge University Press. pp. 1499–66

  • Marcé R, Obrador B, Gómez-Gener L, Catalán N, Koschorreck M, Arce MI, Singer G, von Schiller D. 2019. Emissions from dry inland waters are a blind spot in the global carbon cycle. Earth-Science Reviews 188:240–248.

    Article  Google Scholar 

  • Mariluan GD, Díaz Villanueva V, Albariño RJ. 2015. Leaf litter breakdown and benthic invertebrate colonization affected by seasonal drought in headwater lotic systems of Andean Patagonia. Hydrobiologia 760:171–187.

    Article  CAS  Google Scholar 

  • Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J. 2014. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiology Ecology 87:257–267.

    Article  PubMed  Google Scholar 

  • Medeiros AO, Pascoal C, Graca MAS. 2009. Diversity and activity of aquatic fungi under low oxygen conditions. Freshwater Biology 54:142–149.

    Article  Google Scholar 

  • Minden V, Kleyer M. 2015. Ecosystem multifunctionality of coastal marshes is determined by key plant traits. Journal of Vegetation Science 26:651–662.

    Article  Google Scholar 

  • Molles MC, Crawford CS, Ellis LM. 1995. Effects of an experimental flood on litter dynamics in the middle Rio Grande riparian ecosystem. Regulated Rivers: Research & Management 11:275–281.

    Article  Google Scholar 

  • Mora-Gómez J, Elosegi A, Duarte S, Cássio F, Pascoal C, Romaní AM. 2016. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Microbiology Ecology 92:1–12.

    Article  Google Scholar 

  • Mori T, Aoyagi R, Taga H, Sakai Y. 2021. Effects of water content and mesh size on tea bag decomposition. Ecologies 2:175–186.

    Article  Google Scholar 

  • Nuñez MN, Solman SA, Cabré MF. 2009. Regional climate change experiments over southern South America. II: Climate change scenarios in the late twenty-first century. Climate Dynamics 32:1081–1095.

    Article  Google Scholar 

  • Ochoa-Hueso R, Delgado-Baquerizo M, King PTA, Benham M, Arca V, Power SA. 2019. Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biology and Biochemistry 129:144–152.

    Article  CAS  Google Scholar 

  • Paccagnella YC, Bianchini I, da Cunha-Santino MB. 2020. Decomposition dynamics of two aquatic macrophytes: response of litter interaction with temperature and dissolved oxygen availability. Brazilian Journal of Botany 43:1047–1059.

    Article  Google Scholar 

  • Palmia B, Bartoli M, Laini A, Bolpagni R, Ferrari C, Viaroli P. 2019. Effects of Drying and Re-Wetting on Litter Decomposition and Nutrient Recycling: A Manipulative Experiment. Water 11:1–21.

    Article  Google Scholar 

  • Pessacg N, Flaherty S, Solman S, Pascual M. 2020. Climate change in northern Patagonia: critical decrease in water resources. Theoretical and Applied Climatology 140:807–822.

    Article  Google Scholar 

  • Petraglia A, Cacciatori C, Chelli S, Fenu G, Calderisi G, Gargano D, Abeli T, Orsenigo S, Carbognani M. 2019. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil 435:187–200.

    Article  CAS  Google Scholar 

  • Pettit NE, Davies T, Fellman JB, Grierson PF, Warfe DM, Davies PM. 2012. Leaf litter chemistry, decomposition and assimilation by macroinvertebrates in two tropical streams. Hydrobiologia 680:63–77.

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Maintainer R. 2017. Package ‘nlme’. Linear and nonlinear mixed effects models, version 3.

  • Pinna M, Basset A. 2004. Summer drought disturbance on plant detritus decomposition processes in three River Tirso (Sardinia, Italy) sub-basins. Hydrobiologia 522:311–319.

    Article  Google Scholar 

  • Pinsonneault AJ, Moore TR, Roulet NT. 2016. Temperature the dominant control on the enzyme-latch across a range of temperate peatland types. Soil Biology and Biochemistry 97:121–130.

    Article  CAS  Google Scholar 

  • R Core Team. 2013. R: A language and environment for statistical computing.

  • Reynolds S. 1970. The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems. Journal of Hydrology 11:258–273.

    Article  Google Scholar 

  • Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, Macdonald DW, Morecroft MD. 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology and Biochemistry 49:124–131.

    Article  CAS  Google Scholar 

  • Sarneel JM, Sundqvist MK, Molau U, Björkman MP, Alatalo JM. 2020. Decomposition rate and stabilization across six tundra vegetation types exposed to > 20 years of warming. Science of the Total Environment 724:1–9.

    Article  Google Scholar 

  • Seelen LM, Flaim G, Keuskamp J, Teurlincx S, Font RA, Tolunay D, Fránková M, Šumberová K, Temponeras M, Lenhardt M, Jennings E. 2019. An affordable and reliable assessment of aquatic decomposition: tailoring the Tea Bag Index to surface waters. Water Research 151:31–43.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Shushni MA, Belkheir A. 2015. Antibacterial and antioxidant activities of Mentha piperita L. Arabian Journal of Chemistry 8:322–328.

    Article  CAS  Google Scholar 

  • Suseela V, Tharayil N, Xing B, Dukes JS. 2013. Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytologist 200:122–133.

    Article  CAS  PubMed  Google Scholar 

  • Tiegs SD, Costello DM, Isken MW, Woodward G, McIntyre PB, Gessner MO, Chauvet E, Griffiths NA, Flecker AS, Acuña V, Albariño R. 2019. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances 5:1–8.

    Article  Google Scholar 

  • Trevisan SCC, Menezes APP, Barbalho SM, Guiguer ÉL. 2017. Properties of mentha piperita: a brief review. World J Pharm Med Res 3:309–313.

    Google Scholar 

  • Von Schiller D, Datry T, Corti R, Foulquier A, Tockner K, Marcé R, García-Baquero G, Odriozola I, Obrador B, Elosegi A, Mendoza-Lera C. 2019. Sediment respiration pulses in intermittent rivers and ephemeral streams. Global Biogeochemical Cycles 33:1251–1263.

    Article  Google Scholar 

  • Webster J, Benfield E. 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17:567–594.

    Article  Google Scholar 

  • Wider RK, Lang GE. 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642.

    Article  Google Scholar 

  • Xie Y, Xie Y, Xiao H, Chen X, Li F. 2019. The effects of simulated inundation duration and frequency on litter decomposition: A one-year experiment. Limnologica 74:8–13.

    Article  CAS  Google Scholar 

  • Yajun X, Yonghong X, Xinsheng C, Feng L, Zhiyong H, Xu L. 2016. Non-additive effects of water availability and litter quality on decomposition of litter mixtures. Journal of Freshwater Ecology 31:153–168.

    Article  Google Scholar 

  • Yue K, García-Palacios P, Parsons SA, Yang W, Peng Y, Tan B, Huang C, Wu F. 2018. Assessing the temporal dynamics of aquatic and terrestrial litter decomposition in an alpine forest. Functional Ecology 32:2464–2475.

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1:85–93.

    Article  Google Scholar 

  • Zhang M, Cheng X, Geng Q, Shi Z, Luo Y, Xu X. 2019. Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography 28:1469–1486.

    Article  Google Scholar 

  • Zukswert JM, Prescott CE. 2017. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia 185:305–316.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Estancia Fortín Chacabuco for allowing us to carry out the experiments in their steppe meadows and to Ariel Mayoral, Pablo Alvear and Matías Millerón for their support in the field work. Also, we would like to thank Matías Millerón for providing us with meteorological data from INIBIOMA stations. Finally, we thank the two reviewers for their valuable comments and suggestions which helped us to improve the manuscript.

Funding

Research was carried out with funds from FONCyT (PICT-2018-4385 to V.D-V) and from CONICET (PUE-229-2016-0100008-CO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candela Madaschi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author contributions This study was conceived and designed by VDV and CM. Laboratory and field experiments were carried out by VDV and CM. Data were analyzed by CM and VDV and CM wrote the paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madaschi, C., Díaz-Villanueva, V. A Warm Tea: The Role of Temperature and Hydroperiod on Litter Decomposition in Temporary Wetlands. Ecosystems 25, 1419–1434 (2022). https://doi.org/10.1007/s10021-021-00724-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00724-7

Keywords

Navigation