Skip to main content
Log in

NDVI Spatio-temporal Patterns and Climatic Controls Over Northern Patagonia

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

In this study, we identify the main modes of variability of the Normalized Difference Vegetation Index (NDVI) and their relationships with precipitation and temperature variations across northern Patagonia (36°–45° S). In this approach, we combined a recently developed high-resolution gridded dataset (20 × 20 km) for temperature and precipitation with a re-scaled NDVI grid to spatially match the climate database. Climate–vegetation relationships were analyzed taking into account a wide range of temporal variations (intra- to inter-annual) of both climate and NDVI. An Empirical Orthogonal Function analysis performed on NDVI delimits four regions that are spatially consistent with previous vegetation classifications for northern Patagonia. In addition, these coherent NDVI regions show similarities with the spatial precipitation patterns and the temporal evolution of precipitation over the common period 2001–2010. Both NDVI and precipitation show evident annual cycles over the Mediterranean climatic region in northwestern Patagonia. These annual cycles decrease in amplitude toward the eastern arid rangelands, and to the south on the evergreen all-year-round rainforests. Significant positive relationships between monthly precipitation and NDVI are recorded in the dry temperate rangelands in northeastern Patagonia. In contrast, direct associations between monthly NDVI and precipitation were absent in the Central Patagonia cold grasslands, where seasonal interactions between precipitation, temperature and NDVI appear to be more relevant. Relationships between NDVI and temperature are generally weaker east of the Andes, but significantly positive in late winter/spring over the temperate forests in western North Patagonia. Our results indicate that climate–NDVI relationships in northern Patagonia are biome specifics with the occurrence of temporal lags and precipitation–temperature interactions in the responses of vegetation to climate at some ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aravena JC, Luckman BH. 2009. Spatio-temporal rainfall patterns in southern South America. International Journal of Climatology 29(14):2106–20.

    Google Scholar 

  • Bao G, Bao Y, Sanjjava YA, Qin Z, Zhou Y, Xu G. 2015. NDVI-indicated long-term vegetation dynamics in mongolia and their response to climate change at biome scale. International Journal of Climatology 35(14):4293–306.

    Google Scholar 

  • Barnston AG, Livezey RE. 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly weather review 115(6):1083–126.

    Google Scholar 

  • Bianchi E, Villalba R, Viale M, Couvreux F, Marticorena R. 2016. New precipitation and temperature grids for northern patagonia: advances in relation to global climate grids. Journal of Meteorological Research 30(1):38–52.

    Google Scholar 

  • Bran D. 2000. Las regiones ecológicas de la Patagonia y sus principales formaciones vegetales, Comunicación Técnica (97).

  • Braswell B, Schimel DS, Linder E, Moore B. 1997. The response of global terrestrial ecosystems to interannual temperature variability. Science 278(5339):870–3.

    CAS  Google Scholar 

  • Buermann W, Anderson B, Tucker CJ, Dickinson RE, Lucht W, Potter CS, Myneni RB. 2003. Interannual covariability in northern hemisphere air temperatures and greenness associated with el Niño-Southern Oscillation and the Arctic Oscillation. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2002JD002630.

    Article  Google Scholar 

  • Chapin FS, Matson PA, Vitousek P. 2011. Principles of terrestrial ecosystem ecology. Berlin: Springer.

    Google Scholar 

  • Colyvan M, Ginzburg LR. 2003. Laws of nature and laws of ecology. Oikos 101(3):649–53.

    Google Scholar 

  • Di Lorenzo E, Ohman MD. 2013. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proceedings of the National Academy of Sciences 110(7):2496–9.

    Google Scholar 

  • Donoso C. 1993. Bosques templados de Chile y Argentina. Variación, estructura y dinámica. Ecología Forestal. Santiago, Editorial Universitaria.

  • Drinkwater KF, Beaugrand G, Kaeriyama M, Kim S, Ottersen G, Perry RI, Pörtner HO, Polovina JJ, Takasuka A. 2010. On the processes linking climate to ecosystem changes. Journal of Marine Systems 79(3–4):374–88.

    Google Scholar 

  • Ehleringer JR, Phillips SL, Schuster WS, Sandquist DR. 1991. Differential utilization of summer rains by desert plants. Oecologia 88(3):430–4.

    PubMed  Google Scholar 

  • Fabricante I, Oesterheld M, Paruelo J. 2009. Annual and seasonal variation of ndvi explained by current and previous precipitation across northern patagonia. Journal of Arid Environments 73(8):745–53.

    Google Scholar 

  • Fahey TJ, Knapp AK. 2007. Principles and standards for measuring primary production. Oxford: Oxford University Press.

    Google Scholar 

  • Falvey M, Garreaud R. 2007. Wintertime precipitation episodes in central Chile: associated meteorological conditions and orographic influences. Journal of Hydrometeorology 8(2):171–93.

    Google Scholar 

  • Gaitán JJ, Bran D, Oliva G, Maestre FT, Aguiar MR, Jobbágy E, Buono G, Ferrante D, Nakamatsu V, Ciari G, Salomone J, Massara V. 2014. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands. Biology Letters 10(10):20140673.

    PubMed  PubMed Central  Google Scholar 

  • Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G, Penuelas J, Valentini R. 1995. Relationships between NDVI, canopy structure, and photosynthesis in three californian vegetation types. Ecological Applications 5(1):28–41.

    Google Scholar 

  • Garreaud R. 2009. The andes climate and weather. Advances in Geosciences 22:3.

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J. 2009. Present-day south american climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281(3–4):180–95.

    Google Scholar 

  • Hannachi A, Jolliffe I, Stephenson D. 2007. Empirical orthogonal functions and related techniques in atmospheric science: a review. International Journal of Climatology 27(9):1119–52.

    Google Scholar 

  • Hoskins BJ, Valdes PJ. 1990. On the existence of storm-tracks. Journal of the Atmospheric Sciences 47(15):1854–64.

    Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1–2):195–213.

    Google Scholar 

  • Ichii K, Kawabata A, Yamaguchi Y. 2002. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. International Journal of Remote Sensing 23(18):3873–8.

    Google Scholar 

  • Jobbágy EG, Paruelo JM, León RJ. 1995. Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la patagonia. Ecología Austral 5(1):47–53.

    Google Scholar 

  • Jobbágy EG, Sala OE, Paruelo JM. 2002. Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83(2):307–19.

    Google Scholar 

  • Jobbágy EG, Sala OE. 2000. Controls of grass and shrub aboveground production in the Patagonian steppe. Ecological Applications 10(2):541–9.

    Google Scholar 

  • Kemp PR. 1983. Phenological patterns of chihuahuan desert plants in relation to the timing of water availability. The Journal of Ecology 71:427–36.

    Google Scholar 

  • Knapp AK, Smith MD. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291(5503):481–4.

    CAS  PubMed  Google Scholar 

  • Labraga JC, Villalba R. 2009. Climate in the monte desert: past trends, present conditions, and future projections. Journal of Arid Environments 73(2):154–63.

    Google Scholar 

  • Laclau P. 1997. Los ecosistemas forestales y el hombre en el sur de Chile y Argentina. Boletín técnico, 34.

  • Lara C, Saldías G, Paredes A, Cazelles B, Broitman B. 2018. Temporal variability of MODIS phenological indices in the temperate rainforest of Northern Patagonia. Remote Sensing 10(6):956.

    Google Scholar 

  • Lasaponara R. 2006. On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from spot/vegetation NDVI temporal series. Ecological Modelling 194(4):429–34.

    Google Scholar 

  • Lauenroth W, Sala OE. 1992. Long-term forage production of north american shortgrass steppe. Ecological Applications 2(4):397–403.

    CAS  PubMed  Google Scholar 

  • Lavergne A, Daux V, Villalba R, Barichivich J. 2015. Temporal changes in climatic limitation of tree-growth at upper treeline forests: contrasted responses along the west-to-east humidity gradient in Northern Patagonia. Dendrochronologia 36:49–59.

    Google Scholar 

  • León RJ, Bran D, Collantes M, Paruelo JM, Soriano A. 1998. Main vegetation units of the Extra Andean Patagonia. Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral.

  • Li Z, Kafatos M. 2000. Interannual variability of vegetation in the united states and its relation to El Nino/Southern Oscillation. Remote Sensing of Environment 71(3):239–47.

    Google Scholar 

  • Los SO, Collatz GJ, Bounoua L, Sellers PJ, Tucker CJ. 2001. Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation. Journal of Climate 14(7):1535–49.

    Google Scholar 

  • Mahecha MD, Fürst LM, Gobron N, Lange H. 2010. Identifying multiple spatiotemporal patterns: a refined view on terrestrial photosynthetic activity. Pattern Recognition Letters 31(14):2309–17.

    Google Scholar 

  • Mao D, Wang Z, Luo L, Ren C. 2012. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. International Journal of Applied Earth Observation and Geoinformation 18:528–36.

    Google Scholar 

  • Maybury KP. 1999. Seeing the Forest and the Trees: Ecological classification for Conservation. Arlington, VA: The Nature Conservancy.

    Google Scholar 

  • Mohamed M, Babiker S, Chen Z, Ikeda K, Ohta K, Kato K. 2004. The role of climate variability in the inter-annual variation of terrestrial net primary production (npp). Science of the Total Environment 332(1–3):123–37.

    CAS  PubMed  Google Scholar 

  • Monteith JL, Moss C. 1977. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B: Biological Sciences 281(980):277–94.

    Google Scholar 

  • Navarra A, Simoncini V. 2010. A guide to empirical orthogonal functions for climate data analysis. Berlin: Springer.

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5625):1560–3.

    CAS  PubMed  Google Scholar 

  • Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics 4(1):25–51.

    Google Scholar 

  • Noam S, Cavagnaro JB, Horno ME. 1992. Simulation of defoliation effects on primary production of a warm-season, semiarid perennial-species grassland. Ecological Modelling 60(1):45–61.

    Google Scholar 

  • Oesterheld M, Loreti J, Semmartin M, Sala OE. 2001. Inter-annual variation in primary production of a semi-arid grassland related to previous-year production. Journal of Vegetation Science 12(1):137–42.

    Google Scholar 

  • Ogle K, Reynolds JF. 2004. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141(2):282–94.

    PubMed  Google Scholar 

  • Olivares-Contreras VA, Mattar C, Gutiérrez AG, Jiménez JC. 2019. Warming trends in Patagonian subantartic forest. International Journal of Applied Earth Observation and Geoinformation 76:51–65.

    Google Scholar 

  • Paruelo JM, Aguiar MR, Golluscio RA, León RJ, Pujol G. 1993. Environmental controls of ndvi dynamics in patagonia based on noaa-avhrr satellite data. Journal of Vegetation Science 4(3):425–8.

    Google Scholar 

  • Paruelo JM, Epstein HE, Lauenroth WK, Burke IC. 1997. Anpp estimates from ndvi for the central grassland region of the united states. Ecology 78(3):953–8.

    Google Scholar 

  • Paruelo JM, Jobbágy EG, Sala OE. 1998. Biozones of patagonia (Argentina). Ecología Austral 8(2):145–53.

    Google Scholar 

  • Paruelo JM. 2008. La caracterización funcional de ecosistemas mediante sensores remotos. Revista Ecosistemas 17(3):4–22.

    Google Scholar 

  • Paruelo JM, Oesterheld M, Di Bella CM, Arzadum M, Lafontaine J, Cahuepé M, Rebella CM. 2000. Estimation of primary production of subhumid rangelands from remote sensing data. Applied Vegetation Science 3(2):189–95.

    Google Scholar 

  • Paruelo JM, Jobbágy EG, Sala OE. 2001. Current distribution of ecosystem functional types in temperate South America. Ecosystems 4(7):683–98.

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the köppen-geiger climate classification. Hydrology and Earth System Sciences Discussions 4(2):439–73.

    Google Scholar 

  • Peters DP, Yao J, Sala OE, Anderson JP. 2012. Directional climate change and potential reversal of desertification in arid and semiarid ecosystems. Global Change Biology 18(1):151–63.

    Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. 2005. Using the satellite-derived ndvi to assess ecological responses to environmental change. Trends in Ecology and Evolution 20(9):503–10.

    PubMed  Google Scholar 

  • Pisano E. 1950. Mapa de formaciones vegetales de Chile. Geografia Economica de Chile. Bd, 2.

  • Pol RG, Pirk GI, Marone L. 2010. Grass seed production in the central monte desert during successive wet and dry years. Plant Ecology 208(1):65–75.

    Google Scholar 

  • Prohaska F. 1976. The climate of Argentina, Paraguay and Uruguay, Climates of Central and South. America 12(1976):13–112.

    Google Scholar 

  • Pucheta E, García-Muro V, Rolhauser A, Quevedo-Robledo L. 2011. Invasive potential of the winter grass schismus barbatus during the winter season of a predominantly summer-rainfall desert in central-northern monte. Journal of Arid Environments 75(4):390–3.

    Google Scholar 

  • Ram J, Singh S, Singh J. 1988. Community level phenology of grassland above treeline in central Himalaya, India. Arctic and Alpine Research 20:325–32.

    Google Scholar 

  • Reichmann LG, Sala OE, Peters DP. 2013. Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology 94(2):435–43.

    PubMed  Google Scholar 

  • Reynolds JF, Kemp PR, Ogle K, Fernández RJ. 2004. Modifying the ‘pulse–reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141(2):194–210.

    PubMed  Google Scholar 

  • Richman MB. 1986. Rotation of principal components. International Journal of Climatology 6(3):293–335.

    Google Scholar 

  • Ruimy A, Saugier B, Dedieu G. 1994. Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research: Atmospheres 99(D3):5263–83.

    Google Scholar 

  • Sala OE, Gherardi LA, Reichmann L, Jobbagy EG, Peters D. 2012. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1606):3135–44.

    Google Scholar 

  • Salinero C, Salinero EC. 2006. Teledetección ambiental: la observación de la Tierra desde el espacio, Ariel.

  • Sarkar S, Kafatos M. 2004. Interannual variability of vegetation over the indian sub-continent and its relation to the different meteorological parameters. Remote Sensing of Environment 90(2):268–80.

    Google Scholar 

  • Schwinning S, Sala OE. 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141(2):211–20.

    PubMed  Google Scholar 

  • Sepúlveda M, Bown HE, Miranda MD, Fernández B. 2018. Impact of rainfall frequency and intensity on inter-and intra-annual satellite-derived EVI vegetation productivity of an Acacia caven shrubland community in Central Chile. Plant Ecology 219(10):1209–23.

    Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M. 2002. Ecological effects of climate fluctuations. Science 297(5585):1292–6.

    CAS  PubMed  Google Scholar 

  • Tourre Y, Jarlan L, Lacaux J, Rotela C, Lafaye M. 2008. Spatio-temporal variability of NDVI–precipitation over southernmost South America: possible linkages between climate signals and epidemics. Environmental Research Letters 3(4):044008.

    Google Scholar 

  • Townsend CR, Begon M, Harper JL et al. 2003. Essentials of ecology. 2nd edn. Oxford: Blackwell.

    Google Scholar 

  • Verstraete MM, Scholes RJ, Smith MS. 2009. Climate and desertification: looking at an old problem through new lenses. Frontiers in Ecology and the Environment 7(8):421–8.

    Google Scholar 

  • Viale M, Nuñez MN. 2011. Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. Journal of Hydrometeorology 12(4):481–507.

    Google Scholar 

  • Viale M, Garreaud R. 2015. Orographic effects of the subtropical and extratropical andes on upwind precipitating clouds. Journal of Geophysical Research: Atmospheres 120(10):4962–74.

    Google Scholar 

  • Villalba R, Boninsegna JA, Veblen TT, Schmelter A, Rubulis S. 1997. Recent trends in tree-ring records from high elevation sites in the Andes of northern Patagonia. Climatic Change 36:425–54.

    Google Scholar 

  • Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A. 2003. Large-scale temperature changes across the southern andes: 20th-century variations in the context of the past 400 years. Climatic Change 59(1):177–232.

    Google Scholar 

  • Von Storch H, Zwiers FW. 1999. Statistical analysis in climate research. New York: Cambridge Univ. Press. p 484.

    Google Scholar 

  • Wang J, Rich PM, Price KP. 2003. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing 24(11):2345–64.

    Google Scholar 

  • Webb W, Szarek S, Lauenroth W, Kinerson R, Smith M. 1978. Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology 59(6):1239–47.

    Google Scholar 

  • Westoby M. 1972. Problem-oriented modelling: a conceptual framework. In: IBP/Desert Biome, Information Meeting, Tempe, Ariz, 1972.

  • Yahdjian L, Sala OE. 2006. Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology 87(4):952–62.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Bianchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, E., Villalba, R. & Solarte, A. NDVI Spatio-temporal Patterns and Climatic Controls Over Northern Patagonia. Ecosystems 23, 84–97 (2020). https://doi.org/10.1007/s10021-019-00389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00389-3

Keywords

Navigation