Skip to main content

Advertisement

Log in

Monitoring Climate Sensitivity Shifts in Tree-Rings of Eastern Boreal North America Using Model-Data Comparison

Shifts in Tree Growth Sensivity to Climate

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The growth of high-latitude temperature-limited boreal forest ecosystems is projected to become more constrained by soil water availability with continued warming. The purpose of this study was to document ongoing shifts in tree growth sensitivity to the evolving local climate in unmanaged black spruce (Picea mariana (Miller) B.S.P.) forests of eastern boreal North America (49°N–52°N, 58°W–82°W) using a comparative study of field and modeled data. We investigated growth relationships to climate (gridded monthly data) from observed (50 site tree-ring width chronologies) and simulated growth data (stand-level forest growth model) over 1908–2013. No clear strengthening of moisture control over tree growth in recent decades was detected. Despite climate warming, photosynthesis (main driver of the forest growth model) and xylem production (main driver of radial growth) have remained temperature-limited. Analyses revealed, however, a weakening of the influence of growing season temperature on growth during the mid- to late twentieth century in the observed data, particularly in high-latitude (> 51.5°N) mountainous sites. This shift was absent from simulated data, which resulted in clear model-data desynchronization. Thorough investigations revealed that desynchronization was mostly linked to the quality of climate data, with precipitation data being of particular concern. The scarce network of weather stations over eastern boreal North America (> 51.5°N) affects the accuracy of estimated local climate variability and critically limits our ability to detect climate change effects on high-latitude ecosystems, especially at high altitudinal sites. Climate estimates from remote sensing could help address some of these issues in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aber JD, Reich PB, Goulden ML. 1996. Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia 106:257–65.

    Article  PubMed  Google Scholar 

  • Ågren GI, Axelsson B. 1980. Population respiration: a theoretical approach. Ecol Model 11:39–54.

    Article  Google Scholar 

  • Anyomi KA, Raulier F, Bergeron Y, Mailly D, Girardin MP. 2014. Spatial and temporal heterogeneity of forest site productivity drivers: a case study within the eastern boreal forests of Canada. Landsc Ecol 29:905–18.

    Article  Google Scholar 

  • Babst F, Bouriaud O, Papale D, Gielen B, Janssens IA, Nikinmaa E, Ibrom A, Wu J, Bernhofer C, Kostner B, Grunwald T, Seufert G, Ciais P, Frank D. 2014. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol 201:1289–303.

    Article  PubMed  CAS  Google Scholar 

  • Bernier PY, Bréda N, Granier A, Raulier F, Mathieu F. 2002. Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurements. For Ecol Manag 163:185–96.

    Article  Google Scholar 

  • Boulanger Y, Arseneault D. 2004. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can J For Res 34:1035–43.

    Article  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA. 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–82.

    Article  CAS  Google Scholar 

  • Buermann W, Parida B, Jung M, MacDonald GM, Tucker CJ, Reichstein M. 2014. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys Res Lett 41:1995–2002.

    Article  Google Scholar 

  • Carrer M, Urbinati C. 2004. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–40.

    Article  Google Scholar 

  • Charney ND, Babst F, Poulter B, Record S, Trouet VM, Frank D, Enquist BJ, Evans ME. 2016. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol Lett 19:1119–28.

    Article  PubMed  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ. 2011. The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28.

    Article  Google Scholar 

  • Cook ER, Peters K. 1997. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–70.

    Article  Google Scholar 

  • Coulombe S, Bernier PY, Raulier F. 2009. Uncertainty in detecting climate change impact on the projected yield of black spruce (Picea mariana). Ecol Manag 259:730–8.

    Article  Google Scholar 

  • Dai H. 2014. CombinePValue: combine a vector of correlated p-values. R package version 1.0. http://CRAN.R-project.org/package=CombinePValue

  • Dai H, Leeder JS, Cui Y. 2014. A modified generalized Fisher method for combining probabilities from dependent tests. Front Genet 5:32. https://doi.org/10.3389/gene.2014.00032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly C, Neilson RP, Phillips DL. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–58.

    Article  Google Scholar 

  • D’Arrigo RD, Wilson R, Liepert B, Cherubini P. 2008. On the ‘divergence problem’ in northern forests: a review of the tree ring evidence and possible causes. Glob Planet Change 60:289–305.

    Article  Google Scholar 

  • Direction des inventaires forestiers. 2015. Norme de stratification écoforestière - Quatrième inventaire écoforestier du Québec méridional. Ministère des forêts, de la faune et des parcs. https://www.mffp.gouv.qc.ca/forets/inventaire/pdf/norme-stratification.pdf. Last Accessed 09/02/2017

  • ESRI. 2011. ArcGIS desktop: release 10. Redlands (CA): Environmental Systems Research Institute.

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.

    Article  PubMed  CAS  Google Scholar 

  • Fierravanti A, Cocozza C, Palombo C, Rossi S, Deslauriers A, Tognetti R. 2015. Environmental-mediated relationships between tree growth of black spruce and abundance of spruce budworm along a latitudinal transect in Quebec, Canada. Agric Meteorol 213:53–63.

    Article  Google Scholar 

  • Frechette E, Ensminger I, Bergeron Y, Gessler A, Berninger F. 2011. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate? Tree Physiol 31:1204–16.

    Article  PubMed  CAS  Google Scholar 

  • Galván JD, Büntgen U, Ginzler C, Grudd H, Gutiérrez E, Labuhn I, Camarero JJ. 2015. Drought-induced weakening of growth–temperature associations in high-elevation Iberian pines. Glob Planet Change 124:95–106.

    Article  Google Scholar 

  • Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG. 2015. Boreal forest health and global change. Science 349:819–22.

    Article  PubMed  CAS  Google Scholar 

  • Gifford RM, Evans LT. 1981. Photosynthesis, carbon partitioning, and yield. Annu Rev Plant Physiol 32:485–509.

    Article  CAS  Google Scholar 

  • Girard F, Payette S, Gagnon R. 2011. Dendroecological analysis of black spruce in lichen—spruce woodlands of the closed-crown forest zone in eastern Canada. Ecoscience 18:279–94.

    Article  Google Scholar 

  • Girardin MP, Bernier PY, Gauthier S. 2011a. Increasing potential NEP of eastern boreal North American forests constrained by decreasing wildfire activity. Ecosphere 2: Art 25, 1–23.

  • Girardin MP, Bernier PY, Raulier F, Tardif JC, Conciatori F, Guo XJ. 2011b. Testing for a CO2 fertilization effect on growth of Canadian boreal forests. J Geophys Res 116:1–16.

    Article  CAS  Google Scholar 

  • Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Buntgen U, Guo XJ, Bhatti J. 2016a. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci USA 113:E8406–14.

    Article  PubMed  CAS  Google Scholar 

  • Girardin MP, Guo XJ, Bernier PY, Raulier F, Gauthier S. 2012. Changes in growth of pristine boreal North American forests from 1950 to 2005 driven by landscape demographics and species traits. Biogeosciences 9:2523–36.

    Article  Google Scholar 

  • Girardin MP, Guo XJ, De Jong R, Kinnard C, Bernier P, Raulier F. 2014. Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice. Glob Change Biol 20:851–66.

    Article  Google Scholar 

  • Girardin MP, Hogg EH, Bernier PY, Kurz WA, Guo XJ, Cyr G. 2016b. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob Change Biol 22:627–43.

    Article  Google Scholar 

  • Girardin MP, Raulier F, Bernier PY, Tardif JC. 2008. Response of tree growth to a changing climate in boreal central Canada: a comparison of empirical, process-based, and hybrid modelling approaches. Ecol Model 213:209–28.

    Article  Google Scholar 

  • Gričar J, Prislan P, de Luis M, Gryc V, Hacurová J, Vavrčik H, Čufar K. 2015. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front Plant Sci 6:730.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall RJ, Raulier F, Price DT, Arseneault E, Bernier PY, Case BS, Guo XJ. 2006. Integrating remote sensing and climate data with process-based models to map forest productivity within West-Central Alberta’s boreal forest: Ecoleap-West. For Chron 82:159–76.

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K. 2010. Global surface temperature change. Rev Geophys 48:RG4004. https://doi.org/10.1029/2010RG000345.

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH. 2014. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Clim 34:623–42.

    Article  Google Scholar 

  • Haslinger K, Koffler D, Schöner W, Laaha G. 2014. Exploring the link between meteorological drought and streamflow: effects of climate-catchment interaction. Water Resour Res 50:2468–87.

    Article  Google Scholar 

  • Huang J-G, Tardif JC, Bergeron Y, Denneler B, Berninger F, Girardin MP. 2010. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob Change Biol 16:711–31.

    Article  Google Scholar 

  • Ibáñez B, Ibáñez I, Gómez-Aparicio L, Ruiz-Benito P, García LV, Marañón T. 2014. Contrasting effects of climate change along life stages of a dominant tree species: the importance of soil-climate interactions. Divers Distrib 20:872–83.

    Article  Google Scholar 

  • IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

  • Ito A, Nishina K, Reyer CPO, François L, Henrot A-J, Munhoven Guy, Jacquemin I, Tian H, Yang J, Pan S, Morfopoulos C, Betts R, Hickler Thomas, Steinkamp J, Ostberg S, Schaphoff S, Ciais P, Chang J, Rafique Rashid, Zeng N, Zhao F. 2017. Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Environ Res Lett 12:085001.

    Article  CAS  Google Scholar 

  • Jacoby GC, D’Arrigo RD. 1995. Tree ring width and density evidence of climatic and potential forest change in Alaska. Glob Biogeochem Cycles 9:227–34.

    Article  CAS  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E. 2008. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database. http://srtm.csi.cgiar.org

  • Jaume-Santero F, Pickler C, Beltrami H, Mareschal J-C. 2016. North American regional climate reconstruction from ground surface temperature histories. Clim Past 12:2181–94.

    Article  Google Scholar 

  • Krause C, Luszczynski B, Morin H, Rossi S, Plourde P-Y. 2012. Timing of growth reductions in black spruce stem and branches during the 1970s spruce budworm outbreak. Can J For Res 42:1220–7.

    Article  Google Scholar 

  • Landsberg JJ, Waring RH. 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–28.

    Article  Google Scholar 

  • Lapenis AG, Lawrence GB, Heim A, Zheng C, Shortle W. 2013. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests. Glob Biogeochem Cycles 27:101–7.

    Article  CAS  Google Scholar 

  • Latte N, Lebourgeois F, Claessens H. 2015. Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33:69–77.

    Article  Google Scholar 

  • Lavigne MB, Ryan MG. 1997. Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites. Tree Physiol 17:543–51.

    Article  PubMed  CAS  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK. 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–87.

    Article  CAS  Google Scholar 

  • Ministère des Forêts, de la Faune et des Parcs du Québec (MFFPQ). 2014. Données sur les perturbations naturelles—Insecte: Tordeuse des bourgeons de l’épinette. https://www.donneesquebec.ca/recherche/fr/dataset/donnees-sur-les-perturbations-naturelles-insecte-tordeuse-des-bourgeons-de-lepinette

  • Misson L. 2004. MAIDEN: a model for analyzing ecosystem processes in dendroecology. Can J For Res 34:874–87.

    Article  Google Scholar 

  • Natural Resources Canada. 2002. Canada3D, digital elevation model of the Canadian Landmass 30. http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/aa3dc127-4d10-4c1c-a760-f19bef14042b.html. Government of Canada, Natural Resources Canada, Earth Sciences Sector, Canada Centre for Mapping and Earth Observation, editors. http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/aa3dc127-4d10-4c1c-a760-f19bef14042b.html

  • Navarro-Cerrillo RM, Sánchez-Salguero R, Manzanedo RD, Camarero JJ, Fernández-Cancio Á. 2014. Site and age condition the growth responses to climate and drought of relict Pinus nigra subsp. salzmannii populations in southern Spain. Tree-Ring Res 70:145–55.

    Article  Google Scholar 

  • Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN, Scott RL, Wang L, Phillips RP. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Change 6:1023–7.

    Article  CAS  Google Scholar 

  • Ols C, Hofgaard A, Bergeron Y, Drobyshev I. 2016. Previous growing season climate controls the occurrence of black spruce growth anomalies in boreal forests of Eastern Canada. Can J For Res 46:696–705.

    Article  Google Scholar 

  • Pan Y, Chen JM, Birdsey R, McCullough K, He L, Deng F. 2011. Age structure and disturbance legacy of North American forests. Biogeosciences 8:715–32.

    Article  Google Scholar 

  • Paré D, Bernier P, Lafleur B, Titus BD, Thiffault E, Maynard DG, Guo X. 2013. Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests. Can J For Res 43:599–608.

    Article  CAS  Google Scholar 

  • R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Raulier F, Bernier PY, Ung C-H. 2000. Modeling the influence of temperature on monthly gross primary productivity of sugar maple stands. Tree Physiol 20:333–45.

    Article  PubMed  Google Scholar 

  • Régnière J, Saint-Amant R, Béchard A. 2014. BioSIM 10—User’s manual. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, QC. Inf. Rep. LAU-X-137E. ftp://ftp.cfl.scf.rncan.gc.ca/regniere/software/BioSIM/Doc/LAU-X-137E.zip

  • Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A. 2006. Physiological responses of forest trees to heat and drought. Plant Biol 8:556–71.

    Article  PubMed  CAS  Google Scholar 

  • Robitaille A, Saucier J-P. 1998. Paysages régionaux du Québec méridional. [réalisé par la Direction de la gestion des stocks forestiers et la Direction des relations publiques du Ministère des ressources naturelles du Québec]. Les Publications du Québec, Sainte-Foy, Québec. 213 pp

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M. 2008. Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208.

    PubMed  Google Scholar 

  • Ryan MG. 1991. Effects of climate change on plant respiration. Ecol Appl 1:157–67.

    Article  PubMed  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M. 2015. GPCC Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data.

  • Smith NG, Malyshev SL, Shevliakova E, Kattge J, Dukes JS. 2016. Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nat Clim Change 6:407–11.

    Article  Google Scholar 

  • Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y. 2013. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol Appl 23:21–35.

    Article  PubMed  Google Scholar 

  • Trujillo E, Molotch NP, Goulden ML, Kelly AE, Bales RC. 2012. Elevation-dependent influence of snow accumulation on forest greening. Nat Geosci 5:705–9.

    Article  CAS  Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP. 1999. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–51.

    Article  CAS  Google Scholar 

  • Verbyla D. 2015. Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environ Res Lett 10:125016.

    Article  Google Scholar 

  • Viereck LA, Johnston WF. 1990. Picea mariana (Mill.) B.S.P. Black spruce. In Burns, R. M. and Honkala, B. H. (technical coordinators), Silvics of North America, Volume 1. Conifers. USDA Forest Service Agriculture Handbook 654, Washington, DC.

  • Vlam M, Baker PJ, Bunyavejchewin S, Zuidema PA. 2014. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 174:1449–61.

    Article  PubMed  Google Scholar 

  • Wang Y, Hogg EH, Price DT, Edwards J, Williamson T. 2014. Past and projected future changes in moisture conditions in the Canadian boreal forest. For Chron 90:678–91.

    Article  Google Scholar 

  • Whitlock MC. 2005. Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 18:1368–73.

    Article  PubMed  CAS  Google Scholar 

  • Wilson R, D’Arrigo R, Buckley B, Büntgen U, Esper J, Frank D, Luckman B, Payette S, Vose R, Youngblut D. 2007. A matter of divergence: tracking recent warming at hemispheric scales using tree ring data. J Geophys Res 112:D17103.

    Article  Google Scholar 

  • Wu X, Liu H, Guo D, Anenkhonov OA, Badmaeva NK, Sandanov DV. 2012. Growth decline linked to warming-induced water limitation in Hemi-Boreal forests. PLoS ONE 7(8):e42619. https://doi.org/10.1371/journal.pone.00426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Z, Ahlström A, Smith B, Ardö J, Eklundh L, Fensholt R, Lehsten V. 2017. Climate data induced uncertainty in model-based estimations of terrestrial primary productivity. Environ Res Lett 12:064013.

    Article  Google Scholar 

  • Zang C, Biondi F. 2015. treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography 38:431–6.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Emeline Chaste for GIS analyses, Xiao Jing Guo for assistance with StandLEAP, Williams F. J Parsons for language revision and two anonymous reviewers and the Associate Editor for helpful comments on an earlier version of this manuscript. This study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC Strategic and Discovery Grants), the Nordic Forest Research Cooperation Committee (SNS), the Canadian Forest Service (CFS) and the Research Council of Norway (Grant 160022/E50). This work was also supported by a fellowship from the Forest Complexity Modelling program (NSERC Strategic and Discovery Grants). The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clémentine Ols.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ols, C., Girardin, M.P., Hofgaard, A. et al. Monitoring Climate Sensitivity Shifts in Tree-Rings of Eastern Boreal North America Using Model-Data Comparison. Ecosystems 21, 1042–1057 (2018). https://doi.org/10.1007/s10021-017-0203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0203-3

Keywords

Navigation