Skip to main content
Log in

The Mechanisms of Coexistence and Competitive Exclusion in Complex Plankton Ecosystem Models

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The biodiversity of plankton ecosystems may no longer be a paradox, but the mechanisms that determine coexistence of explicit competitors in ecosystems remain a mystery. This is particularly so in ecosystem models, where competitive exclusion remains the dominant process. Climate and fisheries models require plankton ecosystem sub-models that maintain competing plankton functional types extant, but coexistence can be reproduced in only a few ‘just so’ theoretical models. This limits our ability to predict the impacts of climate change and fisheries on ocean biota. We consider ecosystems of Kolmogorov form that conserve mass (CK systems). These systems describe a general class of ecosystem models that includes many theoretical and applied models. We develop heuristics that illuminate the key mechanisms that allow the coexistence of explicit competitors in these systems. These heuristics facilitate the identification of a large class of models with the structural property that all species coexist for all time. Our approach unifies many theoretical and applied models in a common biogeochemical framework, providing a powerful tool with the potential to generate new insights into the properties of complex ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Boyce DG, Lewis M, Worm B. 2010. Global phytoplankton decline over the past century. Nature (London) 466:591–6.

    Article  CAS  Google Scholar 

  • Chesson P. 2000. Mechanisms of maintenance of species diversity. Ann Rev Ecol Syst 31:343–66.

    Article  Google Scholar 

  • Cropp RA, Norbury J. 2009a. Parameterizing plankton functional type models: insights from a dynamical systems perspective. J Plankton Res 31:939–63.

    Article  CAS  Google Scholar 

  • Cropp RA, Norbury J. 2009b. Simple predator–prey interactions control dynamics in a plankton foodweb model. Ecol Model 220:1552–65.

    Article  Google Scholar 

  • Ebenhoh W. 1988. Coexistence of an unlimited number of algal species in a model system. Theor Popul Biol 34:130–44.

    Article  Google Scholar 

  • Edwards AM, Bees MA. 2001. Generic dynamics of a simple plankton population model with a non-integer exponent of closure. Chaos Solitons Fractals 12:289–300.

    Article  Google Scholar 

  • Emmerson M, Yearsley JM. 2004. Weak interactions, omnivory and emergent food-web properties. Proc R Soc Biol Sci B 271:397–405.

    Article  Google Scholar 

  • Franks PJS. 2002. NPZ models of plankton dynamics: their construction, coupling to physics, and application. J Oceanogr 58:379–87.

    Article  Google Scholar 

  • Gause GF. 1934. The struggle for existence. Baltimore: Williams and Wilkins.

    Book  Google Scholar 

  • Gross T, Edwards AM, Feudel U. 2009. The invisible niche: weakly density-dependent mortality and the coexistence of species. J Theor Biol 258:148–55.

    Article  PubMed  Google Scholar 

  • Hardin G. 1960. The competitive exclusion principle. Science 131:1292–8.

    Article  PubMed  CAS  Google Scholar 

  • Holling CS. 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 45:3–60.

    Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.

    Article  Google Scholar 

  • Huang XC, Zhu L. 2005. Limit cycles in a general Kolmogorov model. Nonlinear Anal 60:1393–414.

    Article  Google Scholar 

  • Huisman J, Weissing FJ. 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402:407–10.

    Article  Google Scholar 

  • Hutchinson GE. 1961. The paradox of the plankton. Am Nat 95:137–45.

    Article  Google Scholar 

  • Ives AR, Carpenter SR. 2007. Stability and diversity of ecosystems. Science 317:58–62.

    Article  PubMed  CAS  Google Scholar 

  • Kolmogorov AN. 1936. Sulla Teoria di Volterra della Lotta per l’Esistenza. G Inst Ita Attuari 7:74–80.

    Google Scholar 

  • Kot M. 2001. Elements of mathematical ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Krivan V. 2003. Competitive coexistence caused by adaptive predators. Evol Ecol Res 5:1163–82.

    Google Scholar 

  • Law R, Morton RD. 1996. Permanence and the assembly of ecological communities. Ecology 77:762–75.

    Article  Google Scholar 

  • Le Quéré C, Harrison SP, Prentice IC, Buitenhuis ET, Aumonts O, Bopp L, Claustre H, Cotrim da Cunha L, Geider RJ, Giraud X, Klaas C, Kohfeld KE, Legrende L, Manizza M, Platt T, Rivkin RB, Sathyendranath S, Uitz J, Watson A, Wolf-Gladrow D. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Change Biol 11:2016–40.

    Google Scholar 

  • May RM. 1973. Stability and complexity in model ecosystems. Princeton: Princeton University Press.

    Google Scholar 

  • May RM, Leonard WJ. 1975. Nonlinear aspects of competition between three species. SIAM J Appl Math 29:243–53.

    Article  Google Scholar 

  • McCann KS. 2000. The diversity–stability debate. Nature 405:228–33.

    Article  PubMed  CAS  Google Scholar 

  • McCann KS, Hastings A. 1997. Re-evaluating the omnivory–stability relationship in food webs. Proc R Soc Lond B 264:1249–54.

    Article  Google Scholar 

  • McCann KS, Hastings A, Huxel GR. 1998. Weak trophic interactions and the balance of nature. Nature 395:794–8.

    Article  CAS  Google Scholar 

  • Montes-Hugo M, Doney S, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield OME. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–3.

    Article  PubMed  CAS  Google Scholar 

  • Namba T, Tanabe K, Maeda N. 2008. Omnivory and stability of food webs. Ecol Complex 5:73–85.

    Article  Google Scholar 

  • Ohman MD, Hirche H-J. 2001. Density-dependant mortality in an oceanic copepod population. Nature 412:638–41.

    Article  PubMed  CAS  Google Scholar 

  • Petrovskii SV, Li B-L, Malchow H. 2003. Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems. Bull Math Biol 65:425–46.

    Article  PubMed  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills S, Daily G, Castilla JC, Lubchenco J, Paine RT. 1996. Challenges in the quest for keystones. Bioscience 46:609–20.

    Article  Google Scholar 

  • Rose K, Allen JI, Artioli Y, Barange M, Blackford J, Carlotti F, Cropp R, Daewel U, Edwards K, Flynn K, Hill S, HilleRisLambers R, Huse G, Mackinson S, Megrey B, Moll A, Rivkin R, Salihoglu B, Schrum C, Shannon L, Shin Y, Lan Smith S, Smith C, Solidoro C, St. John M, Zhou M. 2010. End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps. Mar Coast Fish 2:115–30.

    Article  Google Scholar 

  • Ruan S, Ardito A, Ricciardi P, DeAngelis DL. 2007. Coexistence in competition models with density-dependent mortality. C R Biol 330:845–54.

    Article  PubMed  Google Scholar 

  • Sarnelle O, Wilson AE. 2008. Type III functional response in Daphnia. Ecology 89:1723–32.

    Article  PubMed  Google Scholar 

  • Schippers P, Verschoor AM, Vos M, Mooij WM. 2001. Does “supersaturated coexistence” resolve the “paradox of the plankton”? Ecol Lett 4:404–7.

    Article  Google Scholar 

  • Spitz YH, Moisan JR, Abbott MR. 2001. Configuring an ecosystem model using data from the Bermuda Atlantic Time Series (BATS). Deep Sea Res II 48:1733–68.

    Article  Google Scholar 

  • Steele JH, Henderson EW. 1992. The role of predation in plankton models. J Plankton Res 14:157–72.

    Article  Google Scholar 

  • Tilman D. 2007. Interspecific competition and multispecies coexistence. In: May RM, McLean A, Eds. Theoretical ecology. Oxford: Oxford University Press. p 257.

    Google Scholar 

  • Vallina SM, Simo R, Popova EE, Anderson TR, Gabric A, Cropp RA, Pacheco JM. 2008. A dynamic model of ocean sulfur (DMOS) applied to the Sargasso Sea: simulating the dimethylsulfide (DMS) summer paradox. J Geophys Res (Biogeosciences) 113:G01009. doi:01010.01029/02007JG000415.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Zilkha Trust, Lincoln College, Oxford for financial support for this research. We also thank Michael Landry, Jim Grover and an anonymous reviewer for their constructive comments that led to substantial improvements to the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Cropp.

Additional information

Author Contributions

Both authors contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 680 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cropp, R., Norbury, J. The Mechanisms of Coexistence and Competitive Exclusion in Complex Plankton Ecosystem Models. Ecosystems 15, 200–212 (2012). https://doi.org/10.1007/s10021-011-9503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9503-1

Keywords

Navigation