Skip to main content
Log in

Control of Nitrification by Tree Species in a Common-Garden Experiment

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

We studied the effect of tree species on nitrification in five young plantations and an old native beech coppice forest at the Breuil experimental site in central France. The potential net nitrification (PNN) of soil was high in beech, Corsican pine, and Douglas fir plantations (high nitrifying stands denoted H) and low in spruce and Nordmann fir plantations as well as in native forest stands (low nitrifying stands denoted L). We hypothesized that tree species would stimulate or inhibit nitrification in transplanted soil cores within a few years after the cores were transplanted between stands. We first initiated a transplant experiment where soil cores were exchanged between all stands. The PNN remained high in soil cores from H transferred to H and low in soil cores from L transferred to L. The PNN increased considerably after 16 months in soil cores transferred from L to H, whereas the transfer of soil cores from H to L decreased the PNN only slightly after 28 months. In a second transplant experiment, forest floor material was exchanged between the Douglas fir (H) and the native forest (L) stand. Six months later, the forest floor from the native forest had increased the PNN of the Douglas fir soil considerably, whereas the forest floor from Douglas fir did not affect the PNN of the soil in the native forest stand. It was concluded that beech, Corsican pine, and Douglas fir rapidly stimulate soil nitrification by either activation of suppressed nitrifier communities and/or colonization by new nitrifier communities. Conversely, the slow and irregular reduction of nitrification in spruce, Nordmann fir, and native forest was probably due to the low and heterogeneously distributed flux of inhibiting substances per volume of soil. Our experiments suggest that the inhibition of nitrification is not tightly connected to forest floor leachates, but that the forest floor both reflects and maintains the major ongoing processes. In the long term, humus build up and the production of inhibiting substances may completely block the nitrification activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Mellilo JM. 1989. Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–86.

    Article  Google Scholar 

  • Andrianarisoa KS, Zeller B, Dupouey JL, Dambrine E. 2009. Comparing indicators of N status in 50 beech forests (Fagus sylvatica) in Northeastern France. For Ecol Manag 257:2241–53.

    Article  Google Scholar 

  • Augusto L, Ranger J. 2001. Impact of tree species on soil solutions in acidic conditions. Ann For Sci 58:47–58.

    Article  Google Scholar 

  • Augusto L, Dupouey JL, Ranger J. 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann For Sci 60:823–31.

    Article  Google Scholar 

  • Barg AK, Edmonds RL. 1999. Influence of partial cutting on site microclimate soil nitrogen dynamics, and microbial biomass in Douglas-fir stands in western Washington. Can J For Res 29:705–13.

    Article  Google Scholar 

  • Berendse F. 1998. Effect of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry 42:73–88.

    Article  Google Scholar 

  • Blum U, Shafer SR. 1988. Microbial populations and phenolic acids in soil. Soil Biol Biochem 30:1077–89.

    Google Scholar 

  • Bonneau M, Brethes A, Lacaze JF, Lelong F, Levy G, Nys C, Souchier B. 1977. Modifications de la fertilité des sols sous boisements artificiels de résineux purs. C.R. Fin d’Etude D.G.R.S.T., p 88.

  • Bottner P, Austrui J, Cortez J, Billes G, Couteaux MM. 1998. Decomposition of 14C and 15N labelled plant material, under controlled conditions, in coniferous forest soils from a North-South climatic sequence in Western Europe. Soil Biol Biochem 30:597–610.

    Article  CAS  Google Scholar 

  • Bottomley PJ, Taylor AE, Boule SA, McMahon SK, Rich JJ, Cromack K, Myrold DD. 2004. Responses of nitrification and ammonia-oxidizing bacteria to reciprocal transfers of soil between adjacent coniferous forest and meadow vegetation in the Cascade Mountains of Oregon. Microb Ecol 48:500–8.

    Article  CAS  PubMed  Google Scholar 

  • Brierley EDR, Wood M, Shaw PJA. 2001. Influence of tree species and ground vegetation on nitrification in an acid forest soil. Plant Soil 229:97–104.

    Article  CAS  Google Scholar 

  • Calvaruso C, Mareschal L, Turpault MP, Leclerc E. 2009. Rapid clay weathering in the rhizosphere of Norway spruce and oak in an acid forest ecosystem. Soil Sci Soc Am J 73:331–8.

    Article  CAS  Google Scholar 

  • Colin-Belgrand M, Dambrine E, Bienaimé S, Nys C, Turpault MP. 2003. Influence of tree roots on nitrogen mineralization. Scand J For Res 18:260–8.

    Article  Google Scholar 

  • Falkengren-Grerup U, Brunet J, Diekmann M. 1998. Nitrogen mineralization in deciduous forest soils in south Sweden in gradients of soil acidity and deposition. Environ Pollut 102:415–20.

    Article  CAS  Google Scholar 

  • Falkengren-Grerup U, Schottelndreier M. 2004. Vascular plants as indicators of nitrogen enrichment in soils. Plant Ecol 172:51–62.

    Article  Google Scholar 

  • Goodale CL, Aber JD. 2001. The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecol Appl 11:253–67.

    Article  Google Scholar 

  • Gower ST, Son Y. 1992. Differences in soil and leaf litterfall nitrogen dynamics for five forest plantations. Soil Sci Soc Am J 56:1959–66.

    Article  Google Scholar 

  • Harrison KA, Bol R, Bardgett RD. 2007. Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–99.

    Article  PubMed  Google Scholar 

  • Herbauts J. 1974. Evaluation de la disponibilité potentielle en azote minéral dans différents types forestiers lorrains. Nancy: Université de Nancy I. p 66.

  • Jackson LE, Schimel JP, Firestone MK. 1989. Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–15.

    Article  Google Scholar 

  • Joshi AB, Vann DR, Johnson AH, Miller EK. 2003. Nitrogen availability and forest productivity along a climosequence on Whiteface Mountain, New York. Can J For Res 33:1880–91.

    Article  CAS  Google Scholar 

  • Jussy JH, Colin-Belgrand M, Dambrine E, Ranger J, Zeller B, Bienaime S. 2004. N deposition, N transformation and N leaching in acid forest soils. Biogeochemistry 69:241–62.

    Article  CAS  Google Scholar 

  • Kanerva S, Kitunen V, Kiikkilä O, Loponen J, Smolander A. 2006. Response of soil C and N transformations to tannin fractions originating from Scots pine and Norway spruce needles. Soil Biol Biochem 38:1364–74.

    Article  CAS  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ. 2003. Tannins in nutrient dynamics of forest ecosystems, a review. Plant Soil 256:41–66.

    Article  CAS  Google Scholar 

  • Kraus TEC, Zasoski RJ, Dahlgren RA, Horwath WT, Preston CM. 2004. Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biol Biochem 36:309–21.

    Article  CAS  Google Scholar 

  • Le Tacon F. 1976. La présence de calcaire dans le sol influence sur le comportement de l’Epicéa commun (Picea excelsa Link.) et du pin noir d’Autriche (Pinus nigra nigricans HOST.). Nancy : Institut National Polytechnique de Lorraine. p 214.

  • Li XG, Rengel Z, Mapfumo E, Singh B. 2007. Increase in pH stimulates mineralization of native organic carbon and nitrogen in naturally salt-affected sandy soils. Plant Soil 290:269–82.

    Article  CAS  Google Scholar 

  • Lovett GM, Lindberg SE. 1986. Dry deposition of nitrate to a deciduous forest. Biogeochemistry 2:137–48.

    Article  CAS  Google Scholar 

  • Lovett GM, Weathers KC, Arthur MA, Schultz JC. 2004. Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308.

    Article  CAS  Google Scholar 

  • Moukoumi J. 2006. Effet des essences forestières sur la biodégradation des matières organiques: impact sur la dynamique et le cycle du carbone de l’azote et des éléments minéraux. Nancy: Université Henri Poincaré. p 255.

    Google Scholar 

  • Moukoumi J, Munier-Lamy C, Berthelin J, Ranger J. 2006. Effect of tree species substitution on organic matter biodegradability and mineral nutrient availability in a temperate topsoil. Ann For Sci 63:763–71.

    Article  CAS  Google Scholar 

  • Northup RR, Yu ZS, Dahlgren RA, Vogt KA. 1995. Polyphenol control of nitrogen release from pine litter. Nature 377:227–9.

    Article  CAS  Google Scholar 

  • Norton JM, Firestone MK. 1996. N dynamics in the rhizosphere of Pinus ponderosa seedlings. Soil Biol Biochem 28:351–62.

    Article  CAS  Google Scholar 

  • Nugroho RA, Röling WFM, Laverman AM, Verhoef HA. 2006. Net nitrification rate and presence of Nitrosospira cluster 2 in acid coniferous forest soils appear to be tree species specific. Soil Biol Biochem 38:1166–71.

    Article  CAS  Google Scholar 

  • Paavolainen L, Kitunen V, Smolander A. 1998. Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 205:147–54.

    Article  CAS  Google Scholar 

  • Persson T, Rudebeck A, Jussy JH, Colin-Belgrand M, Priemé A, Dambrine E, Karlsson PS, Sjöberg RM. 2000. Soil nitrogen turnover—mineralisation, nitrification and denitrification in European forest soils. In: Schulze ED, Ed. Carbon and nitrogen cycling in European forest ecosystems. Berlin: Springer. p 297–331.

    Google Scholar 

  • Pietri JCA, Brookes PC. 2008. Nitrogen mineralization along a pH gradient of a silty loam UK soil. Soil Biol Biochem 40:797–802.

    Article  Google Scholar 

  • Prescott CE, Preston CM. 1994. Nitrogen mineralization and decomposition in forest floors in adjacent plantations of western red cedar western hemlock and Douglas-fir. Can J For Res 24:2424–31.

    Article  Google Scholar 

  • Priha O, Hallantie T, Smolander A. 1999. Comparing microbial biomass, denitrification enzyme activity and numbers of nitrifiers in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings by microscale methods. Biol Fertil Soils 30:14–19.

    Article  CAS  Google Scholar 

  • Ranger J, Andreux F, Bienaimé S, Berthelin J, Bonnaud P, Boudot JP, Bréchet C, Buée M, Calmet JP, Chaussod R, Gelhaye D, Gelhaye L, Gerard F, Jaffrain J, Lejon D, Le Tacon F, Lévêque J, Maurice JP, Merlet D, Moukoumi J, Munier-Lamy C, Nourisson G, Pollier B, Ranjard L, Simonsson M, Turpault MP, Vairelles D, Zeller B. 2004. Effet des substitutions d’essence sur le fonctionnement organo-minéral de l’écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif expérimental de Breuil - Morvan). INRA, Nancy. p 201.

  • Reydellet I, Laurent F, Olivier R, Siband P, Ganry F. 1997. Quantification par méthode isotopique de l’effet de la rhizosphère sur la minéralisation de l’azote (cas d’un sol ferrugineux tropical). Agronomie 320:843–7.

    Google Scholar 

  • Russell AE, Raich JW, Valverde-Barrantes OJ, Fisher RF. 2006. Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci Soc Am J 71:1389–97.

    Article  Google Scholar 

  • Schaffers AP, Sykora KV. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–44.

    Article  Google Scholar 

  • Schimel JP, Jackson LE, Firestone MK. 1989. Spatial and temporal effects on plant-microbial competition for inorganic nitrogen in a California annual grassland. Soil Biol Biochem 21:1059–66.

    Article  CAS  Google Scholar 

  • Schrijver AD, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Gielis L, Verheyen K. 2007. The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153:663–74.

    Article  PubMed  Google Scholar 

  • Scott NA, Binkley D. 1997. Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologia 111:151–9.

    Article  Google Scholar 

  • Smolander A, Loponen J, Suominen K, Kitunen V. 2005. Organic matter characteristics and C and N transformations in the humus layer under two tree species, Betula pendula and Picea abies. Soil Biol Biochem 37:1309–18.

    Article  CAS  Google Scholar 

  • Son Y, Lee IK. 1997. Soil nitrogen mineralization in adjacent stands of larch, pine and oak in Central Korea. Ann For Sci 54:1–8.

    Article  Google Scholar 

  • Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL. 2006. A bioluminescence assay to detect nitrification inhibitors released from plant roots; case study with Brachiaria humidicola. Plant Soil 288:101–12.

    Article  CAS  Google Scholar 

  • Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL. 2007. Biological nitrification inhibition (BNI)—is it a widespread phenomenon? Plant Soil 294:5–18.

    Article  CAS  Google Scholar 

  • Suominen K, Kitunen V, Kotiaho T, Ketola R, Smolander A. 2001. Concentrations of volatile monoterpenes in forest soil microair under Picea abies, Pinus sylvestris, and Betula pendula. In: Weber J, Jamroz E, Drozd J, Karczewska A, Eds. Biochemical processes and cycling of elements in the environment. Wroclaw, Poland: Polish society for humic substances. p 371–2.

    Google Scholar 

  • Templer P, Findlay S, Lovett G. 2002. Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA. Soil Biol Biochem 35:607–13.

    Article  Google Scholar 

  • Trum F. 2004. Impact de l’essence sur la composition chimique des litières et de leurs percolats en conditions contrôlées. Belgium: Faculté d’ingénierie biologique agronomique et environnementale, Université Catholique de Louvain. p 143.

    Google Scholar 

  • USDA. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd edn. Washington (DC): U.S. Gov. Print. Office.

    Google Scholar 

  • Van Cleve K, Yarie J, Erickson R, Dyrness CT. 1993. Nitrogen mineralization and nitrification in successional ecosystems on the Tanana River floodplain, interior Alaska. Can J For Res 23:970–78.

    Article  CAS  Google Scholar 

  • Wedraogo FX, Belgy G, Berthelin J. 1993. Seasonal nitrification measurements with different species of forest litters applied to granite sand filled lysimeters in the field. Biol Fertil Soils 15:28–34.

    Article  CAS  Google Scholar 

  • Wertz S, Czarnes F, Bartoli F, Renault P, Commeaux C, Guillaumaud N, Clays-Josserand A. 2007. Early-stage bacterial colonization between a sterilized remoulded soil clod and natural soil aggregates of the same soil. Soil Biol Biochem 39:3127–37.

    Article  CAS  Google Scholar 

  • Whalen JK, Bottomley PJ, Myrold DD. 2001. Short-term nitrogen transformations in bulk and root-associated soils under ryegrass. Soil Biol Biochem 33:1937–45.

    Article  CAS  Google Scholar 

  • White C. 1986. Volatile and water-soluble inhibitors of nitrogen mineralization and nitrification in a ponderosa pine ecosystem. Biol Fertil Soils 2:97–104.

    Google Scholar 

  • White C. 1994. Monoterpenes: their effects on ecosystem nutrient cycle. J Chem Ecol 20:1381–406.

    Article  CAS  Google Scholar 

  • Zeller B, Recous S, Kunze M, Moukoumi J, Colin-Belgrand M, Bienaime S, Ranger J, Dambrine E. 2007. Influence of tree species on gross and net N transformations in forest soils. Ann For Sci 64:151–8.

    Article  CAS  Google Scholar 

  • Zhong Z, Makeschin F. 2004. Comparison of soil nitrogen dynamics under beech, Norway spruce and Scots pine in central Germany. Eur J Forest Res 123:29–37.

    Article  Google Scholar 

  • Zhong Z, Makeschin F. 2006. Differences of soil microbial biomass and nitrogen transformation under two forest types in central Germany. Plant Soil 283:287–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge “Conseil Regional Lorraine” and “Office National des Forêts” for the PhD grant. We sincerely thank Benoit Poillier, Gilles Nourrisson, Serge Didier, Pascal Bonnaud and Dominique Gelhaye for their assistance in the field and laboratory. We sincerely thank all the students of UR “Biogéochimie des Ecosystèmes Forestiers” of INRA Nancy for technical support during the field campaign. We are grateful to Linda Pardo from the USDA Forest Service in Burlington, and to Gregory van der Heijden for thoughtful reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasaina Sitraka Andrianarisoa.

Additional information

Author Contributions

Kasaina Sitraka Andrianarisoa conceived of or designed study, performed research, analyzed data and wrote the paper. Bernd Zeller conceived of or designed study, performed research. Frank Poly conceived of or designed study. Henri Siegenfuhr performed research, analyzed data. Severine Bienaimé performed research. Jacques Ranger conceived of or designed study. Etienne Dambrine conceived of or designed study, analyzed data, and wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianarisoa, K.S., Zeller, B., Poly, F. et al. Control of Nitrification by Tree Species in a Common-Garden Experiment. Ecosystems 13, 1171–1187 (2010). https://doi.org/10.1007/s10021-010-9390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-010-9390-x

Key words

Navigation