Skip to main content
Log in

Rollover prevention control of vehicles with crosswind disturbance

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

In this paper, we propose a design method for a rollover prevention controller using front and rear wheel steering that takes into account the variation of vehicle velocity. First, we propose a new description for vehicles. The description is suitable for controller design in case when vehicle velocity varies. Next, based on the description, we develop a new rollover prevention control scheme. In the vehicle control system using the developed controller, the lateral acceleration tracks the estimated crosswind disturbance in the case of the high risk of rollover so that the risk of rollover can be reduced. Finally, numerical simulations are carried out to demonstrate the usefulness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anubi OM, Crane CD (2013) Roll stabilization of road vehicles using a variable stiffness suspension system. Vehic Syst Dyn 51(12):1894–1917

    Article  Google Scholar 

  2. Zhu Q, Ayalew B (2014) Predictive roll, handling and ride control of vehicles via active suspensions. In: Proceedings of the American Control Conference (ACC), Portland, Oregon, USA, pp 2102–2107

  3. Pages DO, El Hajjaji A (2015) Robust control with parameter uncertainties for vehicle chassis stability in critical situation. In: Proceedings of the IEEE 54th annual conference on decision and control, Osaka, Japan, pp 209–214

  4. Yim S (2018) Design of preview controllers for active roll stabilization. J Mech Sci Technol 32(4):1805–1813

    Article  Google Scholar 

  5. Chen L-K, Cheng C-F, Luo M-F (2008) Rollover prevention through model predictive direct yaw moment control. In: Proceedings of advanced vehicle control, pp 721–726

  6. Yoon J, Kim D, Yi K (2009) Design of a rollover index-based vehicle stability control scheme. Vehicle Syst Dyn 2009:459–475

    Google Scholar 

  7. Imine H, Fridman LM, Madani T (2012) Steering control for rollover avoidance of heavy vehicles. IEEE Trans Veh Technol 61(8):3499–3509

    Article  Google Scholar 

  8. Alberding MB, Tjonnas J, Johasen TA (2014) Integration of vehicle yaw stabilization and rollover prevention through nonlinear hierarchical control allocation. Vehicle Syst Dyn 52(12):1607–1621

    Article  Google Scholar 

  9. Dahniani H, Pagbs O, EI-Hajjaji A, Daraoui N (2014) Observer-based robust control of vehicle dynamics for rollover mitigation in critical situations. IEEE Trans Intell Transport Syst 15(1):274–284

    Article  Google Scholar 

  10. Dal-Pogetto VF, Serpa AL (2016) Vehicle rollover avoidance by application of gain-scheduled LQR controllers using state observers. Vehicle Syst Dyn 54(2):191–209

    Article  Google Scholar 

  11. Jin Z, Zhang L, Zhang J, Khajepour A (2016) Stability and optimised control of tripped and untripped vehicle rollover. Vehicle Syst Dyn 54(10):1405–1427

    Article  Google Scholar 

  12. Shim T, Ghike C (2007) Understanding the limitations of different vehicle models for roll dynamics studies. Vehicle Syst Dyn 45(3):191–216

    Article  Google Scholar 

  13. Braghin F, Cheli F, Corradi R, Tomasini G, Sabbioni E (2008) Active anti-rollover system for heavy-duty road vehicles. Vehicle Syst Dyn 46:653–668

    Article  Google Scholar 

  14. Proppe C, Wetzel C (2010) A probabilistic approach for assessing the crosswind stability of ground vehicles. Vehicle Syst Dyn 48:411–428

    Article  Google Scholar 

  15. Ishio J, Ichikawa H, Kano Y, Abe M (2008) Vehicle-handling quality evaluation through model-based driver steering behavior. Vehicle Syst Dyn 46:549–560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koki Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The equation of motion for \({\varvec{q}}_{\phi } \left( t \right)\) is given by [12]

$$ \begin{aligned} \dot{\user2{q}}_{\phi } \left( t \right) & = \frac{{m_{{\text{s}}} h_{{\text{s}}} }}{{I_{\phi } }}{\varvec{b}}_{{\text{s}}} {\varvec{b}}_{{\text{u}}}^{T} {\varvec{a}}\left( t \right) \\ & \; + \left( {{\varvec{b}}_{{\text{u}}} {\varvec{b}}_{{\text{s}}}^{T} - \frac{1}{{I_{\phi } }}{\varvec{b}}_{{\text{s}}} {\varvec{g}}_{{\text{s}}}^{T} } \right){\varvec{q}}_{\phi } \left( t \right) + {\varvec{b}}_{{{\text{d2}}}} d_{{\text{w}}} \left( t \right). \\ \end{aligned} $$
(29)

From Eqs. (1), (2) and (29), we have

$$ \begin{aligned} \dot{\user2{a}}\left( t \right) + \alpha {\varvec{a}}\left( t \right) & = \left( { - v_{x}^{ - 1} A_{21} + A_{22} } \right){\varvec{q}}_{y} \left( t \right) \\ & - \left( {v_{x}^{ - 1} A_{31} + \frac{{m_{{\text{s}}} h_{{\text{s}}} }}{{I_{{\text{m}}} }}{\varvec{b}}_{{\text{u}}} {\varvec{g}}_{{\text{s}}}^{T} A_{5} } \right){\varvec{a}}\left( t \right) + A_{4} {\varvec{q}}_{\phi } \left( t \right) \\ & + B_{{{\text{p2}}}} \left\{ {{\varvec{b}}_{{\text{u}}} \delta_{{\text{c}}}^{*} \left( t \right) + {\varvec{\mu}}\left( t \right)} \right\} + \left[ {\begin{array}{*{20}c} {{\varvec{b}}_{{{\text{d3}}}} } & {{\varvec{b}}_{{{\text{d1}}}} } \\ \end{array} } \right]{\varvec{d}}_{{\text{w}}} \left( t \right). \\ \end{aligned} $$
(30)

From Eqs. (1), (29) and (30), the dynamic equation (3) can be derived.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, K., Ejiri, A. & Oya, M. Rollover prevention control of vehicles with crosswind disturbance. Artif Life Robotics 26, 250–258 (2021). https://doi.org/10.1007/s10015-020-00666-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-020-00666-8

Keywords

Navigation