Skip to main content

Advertisement

Log in

Molecular genetics of ependymomas and pediatric diffuse gliomas: a short review

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Here, we review the recent literature on molecular discoveries in ependymomas and pediatric diffuse gliomas. Ependymomas can now be categorized into three location-related subgroups according to their biological profile: posterior fossa ependymomas, group A (PFA) and B (PFB), and supratentorial ependymomas. Although no recurrently mutated genes were found throughout these groups of ependymomas, PFA exhibited a CpG island methylator phenotype, PFB was associated with extensive chromosomal aberrations, and the C11orf95-RELA fusion gene was frequently observed in supratentorial ependymomas. Meanwhile, it has now become apparent that pediatric diffuse gliomas have a distinct genetic status from their adult counterparts, even though they share an indistinguishable histology. In pediatric low-grade diffuse gliomas, an intragenic duplication of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB/MYBL1 were found recurrently and mutually exclusively. As for non-brainstem high-grade tumors, in addition to H3F3A, TP53, and ATRX mutations, which were frequently observed in older children, recurrent fusions involving NTRK1, NTRK2, and NTRK3 were reported in infants younger than 3 years of age. Moreover, in diffuse intrinsic pontine gliomas (DIPG), recurrent somatic mutations of ACVR1 were found in association with HIST1H3B mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Mack SC, Witt H, Piro RM et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506:451–455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Pietsch T, Wohlers I, Goschzik T et al (2014) Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-κB signaling pathway. Acta Neuropathol 127:609–611

    Article  PubMed  Google Scholar 

  5. Wani K, Armstrong TS, Vera-Bolanos E et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Hoffman LM, Donson AM, Nakachi I et al (2014) Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol 127:731–745

    Article  PubMed  CAS  Google Scholar 

  7. Ohm JE, McGarvey KM, Yu X et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. McGarvey KM, Fahrner JA, Greene E et al (2006) Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 66:3541–3549

    Article  PubMed  CAS  Google Scholar 

  9. Versteeg R (2014) Cancer: tumours outside the mutation box. Nature 506:438–439

    Article  PubMed  CAS  Google Scholar 

  10. Zhang J, Wu G, Miller CP et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Rand V, Huang J, Stockwell T et al (2005) Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl Acad Sci USA 102:14344–14349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. The cancer genome atlas research network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  Google Scholar 

  13. Singh D, Chan JM, Zoppoli P et al (2012) Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337:1231–1235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Parker BC, Annala MJ, Cogdell DE et al (2013) The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest 123:855–865

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Jones DT, Hutter B, Jäger N (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45:927–932

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Ramkissoon LA, Horowitz PM, Craig JM et al (2013) Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci USA 110:8188–8193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wang M, Tihan T, Rojiani AM et al (2005) Monomorphous angiocentric glioma: a distinctive epileptogenic neoplasm with features of infiltrating astrocytoma and ependymoma. J Neuropathol Exp Neurol 64:875–881

    Article  PubMed  Google Scholar 

  18. Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    Article  PubMed  CAS  Google Scholar 

  19. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  PubMed  CAS  Google Scholar 

  20. Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450

    Article  PubMed  CAS  Google Scholar 

  22. Pollack IF, Finkelstein SD, Burnham J et al (2001) Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 61:7404–7407

    PubMed  CAS  Google Scholar 

  23. Frattini V, Trifonov V, Chan JM et al (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Buczkowicz P, Hoeman C, Rakopoulos P et al (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46:451–456

    Article  PubMed  CAS  Google Scholar 

  25. Taylor KR, Mackay A, Truffaux N et al (2014) Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46:457–461

    Article  PubMed  CAS  Google Scholar 

  26. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J et al (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46:462–466

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumihito Nobusawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobusawa, S., Hirato, J. & Yokoo, H. Molecular genetics of ependymomas and pediatric diffuse gliomas: a short review. Brain Tumor Pathol 31, 229–233 (2014). https://doi.org/10.1007/s10014-014-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-014-0200-6

Keywords

Navigation