Skip to main content

Advertisement

Log in

Downregulation of PAK5 inhibits glioma cell migration and invasion potentially through the PAK5-Egr1-MMP2 signaling pathway

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

PAK5 (p21 activated kinase 5) is upregulated in human colorectal carcinoma cells and is a known tumor promoter in carcinogenesis of the colon. Little is known regarding the mechanisms underlying the downstream targets of PAK5, and information concerning its biological significance in glioma is lacking. In this study, we investigated the effects of PAK5 on proliferation, migration, invasion, and apoptosis in human U87 and U251 glioma cells and examined the underlying molecular mechanism. We performed cell growth assays and cell cycle analysis to observe the cell proliferation. Flow cytometry analysis was performed to evaluate apoptosis, and in vitro scratch assays, cell migration assays, and gelatin zymography were performed to examine cell migration. Western blot analysis was performed to examine signal transduction in the cells. We demonstrated that suppression of PAK5 in glioma cells significantly inhibited cell migration and invasion. We also observed that suppression of PAK5 in human glioma cell lines inhibited cell growth because of G1 phase arrest. Additionally, flow cytometry and Western blot analysis indicated that PAK5 could inhibit cell apoptosis. These results suggest that the PAK5–Egr1–MMP2 signaling pathway is involved in tumor progression and may have a potential role in cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frappaz D, Chinot O, Bataillard A, Ben Hassel M, Capelle L et al (2003) Summary version of the standards, options and recommendations for the management of adult patients with intracranial glioma (2002). Br J Cancer 89(Suppl 1):S73–S83

    Article  PubMed  PubMed Central  Google Scholar 

  2. Parney IF, Chang SM (2003) Current chemotherapy for glioblastoma. Cancer J 9:149–156

    Article  PubMed  CAS  Google Scholar 

  3. Laperriere N, Zuraw L, Cairncross G (2002) Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 64:259–273

    Article  PubMed  Google Scholar 

  4. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  PubMed  CAS  Google Scholar 

  5. Somanath PR, Vijai J, Kichina JV, Byzova T, Kandel ES (2009) The role of PAK-1 in activation of MAP kinase cascade and oncogenic transformation by Akt. Oncogene 28:2365–2369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Marlin JW, Eaton A, Montano GT, Chang YW, Jakobi R (2009) Elevated p21-activated kinase 2 activity results in anchorage-independent growth and resistance to anticancer drug-induced cell death. Neoplasia 11:286–297

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG (2008) P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 27:4900–4908

    Article  PubMed  CAS  Google Scholar 

  8. Pandey A, Dan I, Kristiansen TZ, Watanabe NM, Voldby J et al (2002) Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene 21:3939–3948

    Article  PubMed  CAS  Google Scholar 

  9. Dan C, Nath N, Liberto M, Minden A (2002) PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Mol Cell Biol 22:567–577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Li X, Minden A (2003) Targeted disruption of the gene for the PAK5 kinase in mice. Mol Cell Biol 23:7134–7142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Gong W, An Z, Wang Y, Pan X, Fang W et al (2009) P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. Int J Cancer 125:548–555

    Article  PubMed  CAS  Google Scholar 

  12. Cotteret S, Jaffer ZM, Beeser A, Chernoff J (2003) p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol 23:5526–5539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Wu X, Frost JA (2006) Multiple Rho proteins regulate the subcellular targeting of PAK5. Biochem Biophys Res Commun 351:328–335

    Article  PubMed  CAS  Google Scholar 

  14. Mei PJ, Bai J, Liu H, Li C, Wu YP et al (2011) RUNX3 expression is lost in glioma and its restoration causes drastic suppression of tumor invasion and migration. J Cancer Res Clin Oncol 137:1823–1830

    Article  PubMed  CAS  Google Scholar 

  15. Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 17:471–480

    Article  PubMed  CAS  Google Scholar 

  16. Thiel G, Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193:287–292

    Article  PubMed  CAS  Google Scholar 

  17. Zcharia E, Atzmon R, Nagler A, Shimoni A, Peretz T et al (2012) Inhibition of matrix metalloproteinase-2 by halofuginone is mediated by the Egr1 transcription factor. Anticancer Drugs 23:1022–1031

    Article  PubMed  CAS  Google Scholar 

  18. Tsang CM, Yip YL, Lo KW, Deng W, To KF et al (2012) Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proc Natl Acad Sci USA 109:E3473–E3482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Ferraz C, Lorenz S, Wojtas B, Bornstein SR, Paschke R et al (2013) Inverse correlation of miRNA and cell cycle-associated genes suggests influence of miRNA on benign thyroid nodule tumorigenesis. J Clin Endocrinol Metab 98:E8–E16

    Article  PubMed  CAS  Google Scholar 

  20. Zhuo W, Zhang L, Wang Y, Zhu B, Chen Z (2012) Cyclin D1 G870A polymorphism is a risk factor for esophageal cancer among Asians. Cancer Invest 30:630–636

    Article  PubMed  CAS  Google Scholar 

  21. Vizkeleti L, Ecsedi S, Rakosy Z, Orosz A, Lazar V et al (2012) The role of CCND1 alterations during the progression of cutaneous malignant melanoma. Tumour Biol 33:2189–2199

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Gong W, Qing H, Geng Y, Zhang Y et al (2010) p21-Activated kinase 5 inhibits camptothecin-induced apoptosis in colorectal carcinoma cells. Tumour Biol 31:575–582

    Article  PubMed  CAS  Google Scholar 

  23. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430–13437

    Article  PubMed  CAS  Google Scholar 

  24. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES (1996) Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA 93:14486–14491

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Rosenberg GA (1995) Matrix metalloproteinases in brain injury. J Neurotrauma 12:833–842

    Article  PubMed  CAS  Google Scholar 

  26. Ray JM, Stetler-Stevenson WG (1994) The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur Respir J 7:2062–2072

    PubMed  CAS  Google Scholar 

  27. Stetler-Stevenson WG (1990) Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev 9:289–303

    Article  PubMed  CAS  Google Scholar 

  28. Woessner JF Jr, Gunja-Smith Z (1991) Role of metalloproteinases in human osteoarthritis. J Rheumatol Suppl 27:99–101

    PubMed  Google Scholar 

  29. Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270

    Article  PubMed  CAS  Google Scholar 

  30. Komatsu K, Nakanishi Y, Nemoto N, Hori T, Sawada T et al (2004) Expression and quantitative analysis of matrix metalloproteinase-2 and -9 in human gliomas. Brain Tumor Pathol 21:105–112

    Article  PubMed  CAS  Google Scholar 

  31. Wang M, Wang T, Liu S, Yoshida D, Teramoto A (2003) The expression of matrix metalloproteinase-2 and -9 in human gliomas of different pathological grades. Brain Tumor Pathol 20:65–72

    Article  PubMed  Google Scholar 

  32. Abe T, Mori T, Kohno K, Seiki M, Hayakawa T et al (1994) Expression of 72 kDa type IV collagenase and invasion activity of human glioma cells. Clin Exp Metastasis 12:296–304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by grants from the key project of the Education Department of China (212062) and the Program for New Century Excellent Talents in University (NCET-08-0700).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Sheng Pei or Jun-Nian Zheng.

Additional information

Z.-X. Han and X.-X. Wang contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, ZX., Wang, XX., Zhang, SN. et al. Downregulation of PAK5 inhibits glioma cell migration and invasion potentially through the PAK5-Egr1-MMP2 signaling pathway. Brain Tumor Pathol 31, 234–241 (2014). https://doi.org/10.1007/s10014-013-0161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-013-0161-1

Keywords

Navigation