Skip to main content
Log in

Ghost Effect from Boltzmann Theory: Expansion with Remainder

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Consider the limit \(\varepsilon \rightarrow 0\) of the steady Boltzmann problem

$$\begin{aligned} v\cdot \nabla _{x} \mathfrak {F}=\varepsilon ^{-1}Q[\mathfrak {F},\mathfrak {F}],\quad \mathfrak {F}\big |_{v\cdot n<0}=M_{w}\int _{v'\cdot n>0} \mathfrak {F}(v')|v'\cdot n|\textrm{d}v', \end{aligned}$$
(0.1)

where \(M_{w}(x_0,v):=\frac{1}{2\pi (T_{w}(x_0))^2}\exp \big (-\frac{|v|^2}{2T_{w}(x_0)}\big )\) for \(x_0\in \partial \Omega \) is the wall Maxwellian in the diffuse-reflection boundary condition. We normalize

$$\begin{aligned} T_{w}=1+O\left( |\nabla T_{w}|_{L^{\infty }}\right) . \end{aligned}$$

In the case of \(|\nabla T_{w}|=O(\varepsilon )\), the Hilbert expansion confirms \(\mathfrak {F}\approx (2\pi )^{-\frac{3}{2}}\textrm{e}^{-\frac{|v|^2}{2}}+\varepsilon (2\pi )^{-\frac{3}{4}}\textrm{e}^{-\frac{|v|^2}{4}}\big (\rho _1+T_1\frac{|v|^2-3}{2}\big )\) where \((2\pi )^{-\frac{3}{2}}\textrm{e}^{-\frac{|v|^2}{2}}\) is a global Maxwellian and \((\rho _1,T_1)\) satisfies the celebrated Fourier law

$$\begin{aligned} \Delta _xT_1=0. \end{aligned}$$

In the natural case of \(|\nabla T_{w}|=O(1)\), for any constant \(P>0\), the Hilbert expansion leads to

$$\begin{aligned} \mathfrak {F}\approx \mu +\varepsilon \left\{ \mu \left( \rho _1+u_1\cdot v+T_1\frac{|v|^2-3T}{2}\right) -\mu ^{\frac{1}{2}}\left( \mathscr {A}\cdot \frac{\nabla _{x}T}{2T^2}\right) \right\} , \end{aligned}$$

where \(\mu (x,v):=\frac{\rho (x)}{(2\pi T(x))^{\frac{3}{2}}}\exp \big (-\frac{|v|^2}{2T(x)}\big )\), and \((\rho ,u_1,T)\) is determined by a Navier–Stokes–Fourier system with “ghost” effect

$$\begin{aligned} \left\{ \begin{array}{rcl} P&{}=&{}\rho T,\\ \rho (u_1\cdot \nabla _{x}u_1)+\nabla _{x} \mathfrak {p}&{}=&{}\nabla _{x}\cdot \left( \tau ^{(1)}-\tau ^{(2)}\right) ,\\ \nabla _{x}\cdot (\rho u_1)&{}=&{}0,\\ \nabla _{x}\cdot \left( \kappa \frac{\nabla _{x}T}{2T^2}\right) &{}=&{}5P(\nabla _{x}\cdot u_1), \end{array}\right. \end{aligned}$$
(0.2)

with the boundary condition

$$\begin{aligned} T\Big |_{\partial \Omega }= T_{w},\quad u_1\Big |_{\partial \Omega }:=(u_{1,\iota _1},u_{1,\iota _2},u_{1,n})\Big |_{\partial \Omega }=(\beta _0\partial _{\iota _1} T_{w},\beta _0\partial _{\iota _2} T_{w},0). \end{aligned}$$
(0.3)

Here \(\kappa [T]>0\) is the heat conductivity, \((\iota _1,\iota _2)\) are two tangential variables and n is the normal variable, \(\beta _0=\beta _0[T_{w}]\) is a function of \(T_{w}\), \(\tau ^{(1)}:=\lambda \left( \nabla _{x}u_1+(\nabla _{x}u_1)^t-\frac{2}{3}(\nabla _{x}\cdot u_1)\textbf{1}\right) \) and \(\tau ^{(2)}:=\frac{\lambda ^2}{P}\left( K_1\big (\nabla _{x}^2T-\frac{1}{3}\Delta _x T\textbf{1}\big )+\frac{K_2}{T}\big (\nabla _{x}T\otimes \nabla _{x}T-\frac{1}{3}|\nabla _{x}T|^2\textbf{1}\big )\right) \) for some smooth function \(\lambda [T]>0\), the viscosity coefficient, and positive constants \(K_1\) and \(K_2\). Tangential temperature variation creates non-zero first-order velocity \(u_1\) at the boundary (0.3), which plays a surprising “ghost” effect [26, 27] in determining zeroth-order density and temperature field \((\rho ,T)\) in (0.2). Such a ghost effect cannot be predicted by the classical fluid theory, while it has been an intriguing outstanding mathematical problem to justify (0.2) from (0.1) due to fundamental analytical challenges. The goal of this paper is to construct \(\mathfrak {F}\) in the form of

$$\begin{aligned} \mathfrak {F}(x,v)=\mu +\mu ^{\frac{1}{2}}\left( \varepsilon f_1+\varepsilon ^2 f_2\right) +\mu _{w}^{\frac{1}{2}}\left( \varepsilon f^{B}_1\right) +\varepsilon ^{\alpha }\mu ^{\frac{1}{2}}R \end{aligned}$$
(0.4)

for interior solutions \(f_1\), \(f_2\) and boundary layer \(f^{B}_1\), where \(\mu _w\) is \(\mu \) computed for \(T= T_{w}\), and derive equation for the remainder R with some constant \(\alpha \ge 1\). To prove the validity of the expansion suitable bounds on R are needed, which are provided in the companion paper (Esposito 2023).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkeryd, L., Esposito, R., Marra, R., Nouri, A.: Ghost effect by curvature in planar Couette flow. Kinet. Relat. Models 4, 109–138 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bardos, C., Caflisch, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math. 39, 323–352 (1986)

    Article  MathSciNet  Google Scholar 

  3. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations I: formal derivations. J. Statist. Phys. 63, 323–344 (1991)

    Article  MathSciNet  Google Scholar 

  4. Bardos, C., Levermore, C.D., Ukai, S., Yang, T.: Kinetic equations: fluid dynamical limits and viscous heating. Bull. Inst. Math. Acad. Sin. (N.S.) 3, 1–49 (2008)

    MathSciNet  Google Scholar 

  5. Bobylev, A.V.: Quasistationary hydrodynamics for the Boltzmann equation. J. Statist. Phys. 80, 1063–1083 (1995)

    Article  MathSciNet  Google Scholar 

  6. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Springer, New York (2013)

    Book  Google Scholar 

  7. Brull, S.: Problem of evaporation-condensation for a two component gas in the slab. Kinet. Relat. Models 1, 185–221 (2008)

    Article  MathSciNet  Google Scholar 

  8. Brull, S.: The stationary Boltzmann equation for a two-component gas in the slab. Math. Methods Appl. Sci. 31, 153–178 (2008)

    Article  MathSciNet  Google Scholar 

  9. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308–340 (1961)

    MathSciNet  Google Scholar 

  10. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer-Verlag, New York (1994)

    Book  Google Scholar 

  11. De Masi, A., Esposito, R., Lebowitz, J.L.: Incompressible Navier-Stokes and Euler limits of the Boltzmann equation. Commun. Pure Appl. Math. 42, 1189–1214 (1989)

    Article  MathSciNet  Google Scholar 

  12. Esposito, R., Guo, Y., Marra, R., Wu, L.: Ghost effect from Boltzmann theory. arXiv:2301.09427 (2023)

  13. Esposito, R., Pulvirenti, M.: From particles to fluids. In: Friedlander, F., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 3, pp. 1–82. Elsevier, North-Holland (2010)

    Google Scholar 

  14. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1996)

    Book  Google Scholar 

  15. Huang, F., Tan, W.: On the strong solution of the ghost effect system. SIAM J. Math. Anal. 49, 3496–3526 (2017)

    Article  MathSciNet  Google Scholar 

  16. Huang, F., Wang, Y., Wang, Y., Yang, T.: Justification of limit for the Boltzmann equation related to Korteweg theory. Quart. Appl. Math. 74, 719–764 (2016)

    Article  MathSciNet  Google Scholar 

  17. Jiang, N., Levermore, C.D.: Weakly nonlinear-dissipative approximations of hyperbolic-parabolic systems with entropy. Arch. Ration. Mech. Anal. 201, 377–412 (2011)

    Article  MathSciNet  Google Scholar 

  18. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MathSciNet  Google Scholar 

  19. Kogan, M.: On the equations of motion of a rarefied gas. J. Appl. Math. Mech. 22, 597–607 (1958)

    Article  MathSciNet  Google Scholar 

  20. Kogan, M., Galkin, V., Fridlender, O.: Stresses produced in gases by temperature and concentration inhomogeneities. New types of free convection. Sov. Phys. Usp. 19, 420–428 (1976)

  21. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. American Mathematical Society, Providence, RI (2008)

    Book  Google Scholar 

  22. Levermore, C.D., Sun, W., Trivisa, K.: A low Mach number limit of a dispersive Navier-Stokes system. SIAM J. Math. Anal. 44, 1760–1807 (2012)

    Article  MathSciNet  Google Scholar 

  23. Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Springer-Verlag, Berlin (2009)

    Book  Google Scholar 

  24. Sone, Y.: Thermal creep in rarefied gas. J. Phys. Soc. Jpn. 21, 1836–1837 (1966)

    Article  Google Scholar 

  25. Sone, Y.: Flow induced by thermal stress in rarefied gas. Phys. Fluids 15, 1418–1423 (1972)

    Article  Google Scholar 

  26. Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston, MA (2002)

    Book  Google Scholar 

  27. Sone. Y.: Molecular Gas Dynamics. Theory, Techniques, and Applications. Birkhäuser, Boston, MA (2007)

  28. Sone, Y., Aoki, K., Takata, S., Sugimoto, H., Bobylev, A.V.: Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: examination by asymptotic analysis and numerical computation of the Boltzmann equation. Phys. Fluids 8, 628–638 (1996)

    Article  MathSciNet  Google Scholar 

  29. Takata, S., Aoki, K.: The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: asymptotic analysis of the Boltzmann equation. The Sixteenth International Conference on Transport Theory, Part I (Atlanta, GA, 1999). Transp. Theory Stat. Phys. 30, 205–237 (2001)

  30. Wu, L., Ouyang, Z.: Asymptotic analysis of Boltzmann equation in bounded domains. arXiv:2008.10507 (2020)

Download references

Acknowledgements

Y. Guo was supported by NSF Grant DMS-2106650. R. Marra is supported by INFN. L. Wu was supported by NSF Grant DMS-2104775. The authors would like to thank Kazuo Aoki and Shigeru Takata for helpful discussions. Also, the authors would like to thank Yong Wang for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Guo.

Additional information

Dedication to Professor Carlos Kenig for his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, R., Guo, Y., Marra, R. et al. Ghost Effect from Boltzmann Theory: Expansion with Remainder. Vietnam J. Math. (2024). https://doi.org/10.1007/s10013-024-00686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10013-024-00686-y

Keywords

Mathematics Subject Classification (2010)

Navigation