Skip to main content
Log in

Sign of the Solutions of Linear Fractional Differential Equations and Some Applications

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work we wish to highlight some consequences of a recent result proved in (J. Integral Equ. Appl. 29: 585–608, 2017). Particular emphasis will be given to its application on fractional variational problems of Herglotz type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We have never seen such type of result in the literature.

  2. That is, (1 + x)n ≥ 1 + nx for x > − 1 and \(n\in \mathbb {N}\).

  3. In the notation of [4] we are considering here β = α.

  4. A function \(g : \mathbb {R}^{n}\times \mathbb {R}^{n} \to \mathbb {R}^{j}\) is said to be submersive at a point \((x_{a},x_{b})\in \mathbb {R}^{n}\times \mathbb {R}^{n}\) if its differential at this point is surjective.

References

  1. Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Almeida, R., Malinowska, A.B.: Fractional variational principle of Herglotz. Discrete Contin. Dyn. Syst. Ser. B 19, 2367–2381 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Băleanu, D., Mustafa, O.G.: On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 59, 1835–1841 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergounioux, M., Bourdin, L.: Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints. ESAIM Control Optim. Calc. Var. 26, 35 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourdin, L.: Weighted hölder continuity of Riemann-Liouville fractional integrals – Application to regularity of solutions to fractional Cauchy problems with carathéodory dynamics. Fract. Calc. Appl. Anal. 22, 722–749 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caputo, M.C., Torres, D.F.M.: Duality for the left and right fractional derivatives. Signal Process. 107, 265–271 (2015)

    Article  Google Scholar 

  7. Cong, N.D., Tuan, H.T.: Generation of nonlocal fractional dynamical systems by fractional differential equations. J. Integral Equ. Appl. 29, 585–608 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Denton, Z., Vatsala, A.S.: Fractional integral inequalities and applications. Comput. Math. Appl. 59, 1087–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diethelm, K.: On the separation of solutions of fractional differential equations. Fract. Calc. Appl. Anal. 11, 259–268 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, vol. 2004. Springer, Berlin (2010)

    Google Scholar 

  11. Ferreira, R.A.C.: A new look at Bernoulli’s inequality. Proc. Amer. Math. Soc. 146, 1123–1129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferreira, R.A.C.: Addendum to “A new look at Bernoulli’s inequality”. Proc. Amer. Math. Soc. (to appear). https://doi.org/10.1090/proc/15350

  13. Ferreira, R.A.C.: Fractional calculus of variations: a novel way to look at it. Fract. Calc. Appl. Anal. 22, 1133–1144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Georgieva, B., Guenther, R.: Second Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 26, 307–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications. Springer monographs in mathematics. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  16. Herglotz, G.: Berührungstransformationen. Lectures at the University of Göttingen, Göttingen (1930)

    Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

    Google Scholar 

  18. Miller, K.S., Samko, S.G.: A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Anal. Exch. 23, 753–755 (1997/98)

    Article  MathSciNet  MATH  Google Scholar 

  19. Santos, S.P.S., Martins, N., Torres, D.F.M.: An optimal control approach to herglotz variational problems. In: Plakhov, A., Tchemisova, T., Freitas, A (eds.) Optimization in the Natural Sciences. Communications in Computer and Information Science, vol. 499, pp 107–117. Springer, Cham (2015)

Download references

Acknowledgements

The author was supported by the “Fundação para a Ciência e a Tecnologia (FCT)” through the program “Stimulus of Scientific Employment, Individual Support-2017 Call” with reference CEECIND/00640/2017.

The author would like to thank the referees for their careful reading of the manuscript, and their corrections and suggestions which contributed to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui A. C. Ferreira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, R.A.C. Sign of the Solutions of Linear Fractional Differential Equations and Some Applications. Vietnam J. Math. 51, 451–461 (2023). https://doi.org/10.1007/s10013-021-00541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-021-00541-4

Keywords

Mathematics Subject Classification (2010)

Navigation