Skip to main content
Log in

Boundary Value Problems for Dirac-Harmonic Maps and Their Heat Flows

  • Review Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Dirac-harmonic maps are critical points of an action functional that is motivated from the nonlinear σ-model of quantum field theory. They couple a harmonic map like field with a nonlinear spinor field. In this article, we shall discuss the latest progress on heat flow approaches for the existence of Dirac-harmonic maps under appropriate boundary conditions. Also, we discuss the refined blow-up analysis for two types of approximating Dirac-harmonic maps arising from those heat flow approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and in the sequel, for simplicity of notations, when talking about a sequence of (ϕα,ψα) for α ↘ 1, we mean the sequence of \((\phi _{\alpha _{k}},\psi _{\alpha _{k}})\) for a given sequence of αk ↘ 1.

  2. Compared to the usual rescaling, i.e. \(\left (\phi _{\alpha }\left (x_{\alpha }+\lambda _{\alpha } x\right ),\sqrt {\lambda _{\alpha }}\psi _{\alpha }\left (x_{\alpha }+\lambda _{\alpha } x\right )\right )\), for a blow-up sequence of Dirac-harmonic maps given in [5], here the additional factor \(\lambda _{\alpha }^{\alpha -1}\) comes from the fact that α-Dirac-harmonic maps are not conformally invariant.

  3. Here we have used the fact that the unique spin structure on \(\mathbb {S}^{2} \setminus \{p\}\) extends to the unique spin structure on \(\mathbb {S}^{2}\) and so does the associated spinor bundle.

  4. It is easy to check that a rescaled α-Dirac-harmonic map, e.g. \(\left (\phi _{\alpha }(\lambda _{\alpha } x), \lambda _{\alpha }^{\alpha -1}\sqrt {\lambda _{\alpha }}\psi _{\alpha }(r_{\alpha } x)\right )\) is locally a critical point of this functional, we refer to Section 5 in [19] for details. We refer to the beginning of Section 2 in [29] for the analogous case of α-harmonic maps.

  5. Let us explain the transformation of the spinor part. In fact, it can be seen as a linear transformation (i.e. \(\lambda _{\alpha }^{\alpha -1}\psi _{\alpha }\)) composed with a conformal transformation (i.e. \(\sqrt {\lambda _{\alpha }}\psi _{\alpha }(x_{\alpha }+\lambda _{\alpha } x)\)). Since α-Dirac-harmonic maps are not conformally invariant, to get unified bubble equations, we need an additional factor \(\lambda _{\alpha }^{\alpha -1}\) in the scaling.

References

  1. Ammann, B., Ginoux, N.: Dirac-harmonic maps from index theory. Calc. Var. Partial Differ. Equ. 47, 739–762 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bär, C., Ballmann, W.: Boundary value problems for elliptic differential operators of first order. In: Surveys in Differential Geometry, vol. 17, pp 1–78. Int. Press, Boston, MA (2012)

  3. Chang, K.C.: Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincare Anal. Non Lineaire 6, 363–395 (1989)

    Article  MathSciNet  Google Scholar 

  4. Chang, K., Ding, W., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36, 507–515 (1992)

    Article  MathSciNet  Google Scholar 

  5. Chen, Q., Jost, J., Li, J., Wang, G.: Regularity theorems and energy identities for Dirac-harmonic maps. Math. Z. 251, 61–84 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chen, Q., Jost, J., Li, J., Wang, G.: Dirac-harmonic maps. Math. Z. 254, 409–432 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chen, Q., Jost, J., Wang, G.: The maximum principle and the Dirichlet problem for Dirac-harmonic maps. Calc. Var. Partial Differ. Equ. 47, 87–116 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chen, Q., Jost, J., Zhu, M.: Dirac-geodesics and their heat flows. Calc. Var. Partial Differ. Equ. 54, 2615–2635 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chen, Q., Jost, J., Sun, L., Zhu, M.: Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem. J. Eur. Math. Soc. 21, 665–707 (2019)

    Article  MathSciNet  Google Scholar 

  10. Chen, Q., Jost, J., Wang, G., Zhu, M.: The boundary value problem for Dirac-harmonic maps. J. Eur. Math. Soc. 15, 997–1031 (2013)

    Article  MathSciNet  Google Scholar 

  11. Deligne, P.: Quantum Fields and Strings: A Course for Mathematicians, vol. 2. American Mathematical Society, Providence, RI (1999)

  12. Ding, W., Tian, G.: Energy identity for a class of approximate harmonic maps from surfaces. Commun. Anal. Geom. 3, 543–554 (1995)

    Article  MathSciNet  Google Scholar 

  13. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  Google Scholar 

  14. Gibbons, G.W., Hawking, S.W., Perry, M.J.: Positive mass theorems for black holes. Commun. Math. Phys. 88, 295–308 (1983)

    Article  MathSciNet  Google Scholar 

  15. Hamilton, R.: Harmonic Maps of Manifolds with Boundary. Lecture Notes in Mathematics, vol. 471. Springer, Berlin, Heidelberg (1975)

    Book  Google Scholar 

  16. Hijazi, O., Montiel, S., Roldán, A.: Eigenvalue boundary problems for the Dirac operator. Commun. Math. Phys. 231, 375–390 (2002)

    Article  MathSciNet  Google Scholar 

  17. Hong, M., Yin, H.: On the Sacks-Uhlenbeck flow of Riemannian surfaces. Commun. Anal. Geom. 21, 917–955 (2013)

    Article  MathSciNet  Google Scholar 

  18. Jost, J., Liu, L., Zhu, M.: A global weak solution of the Dirac-harmonic map flow. Ann. Inst. H. Poincare Anal. Non Lineaire 34, 1851–1882 (2017)

    Article  MathSciNet  Google Scholar 

  19. Jost, J., Liu, L., Zhu, M.: Geometric analysis of a mixed elliptic-parabolic conformally invariant boundary value problem. MPI MIS Preprint 41/2018 (2018)

  20. Jost, J., Liu, L., Zhu, M.: Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to the Dirac-harmonic heat flow. Calc. Var. Partial Differ. Equ. 56, 108 (2017)

    Article  MathSciNet  Google Scholar 

  21. Jost, J., Liu, L., Zhu, M.: Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary. Ann. Inst. H. Poincare Anal. Non Lineaire 36, 365–387 (2019)

    Article  MathSciNet  Google Scholar 

  22. Jost, J., Mo, X., Zhu, M.: Some explicit constructions of Dirac-harmonic maps. J. Geom. Phys. 59, 1512–1527 (2009)

    Article  MathSciNet  Google Scholar 

  23. Jost, J., Wang, G., Zhou, C., Zhu, M.: The boundary value problem for the super-Liouville equation. Ann. Inst. H. Poincaré, Anal. Non Linéaire 31, 685–706 (2014)

    Article  MathSciNet  Google Scholar 

  24. Jost, J., Zhou, C., Zhu, M.: The qualitative boundary behavior of blow-up solutions of the super-Liouville equations. J. Math. Pures Appl. 101, 689–715 (2014)

    Article  MathSciNet  Google Scholar 

  25. Jost, J., Zhou, C., Zhu, M.: Energy quantization for a singular super-Liouville boundary value problem. Math. Ann. https://doi.org/10.1007/s00208-020-02023-3(2020)

  26. Jost, J., Zhu, J.: α-Dirac-harmonic maps from closed surfaces. MPI MIS Preprint 31/2019 (2019)

  27. Jost, J., Zhu, J.: Short-time existence of the α-Dirac-harmonic map flow and applications. MPI MIS Preprint: 105/2019 (2019)

  28. Lawson, H., Michelsohn, M.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

    Google Scholar 

  29. Li, Y., Wang, Y.: A weak energy identity and the length of necks for a sequence of Sacks–Uhlenbeck α-harmonic maps. Adv. Math. 225, 1134–1184 (2010)

    Article  MathSciNet  Google Scholar 

  30. Liu, L.: No neck for Dirac-harmonic maps. Calc. Var. Partial Differ. Equ. 52, 1–15 (2015)

    Article  MathSciNet  Google Scholar 

  31. Qing, J.: On singularities of the heat flow for harmonic maps from surface into spheres. Commun. Anal. Geom. 3, 297–315 (1995)

    Article  MathSciNet  Google Scholar 

  32. Qing, J., Tian, G.: Bubbling of the heat flows for harmonic maps from surfaces. Commun. Pure Appl Math. 50, 295–310 (1997)

    Article  MathSciNet  Google Scholar 

  33. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113, 1–24 (1981)

    Article  MathSciNet  Google Scholar 

  34. Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Commun. Math. Helv. 60, 558–581 (1985)

    Article  MathSciNet  Google Scholar 

  35. Wittmann, J.: Short time existence of the heat flow for Dirac-harmonic maps on closed manifolds. Calc. Var. Partial Differ. Equ. 56, 169 (2017)

    Article  MathSciNet  Google Scholar 

  36. Zhao, L.: Energy identities for Dirac-harmonic maps. Calc. Var. Partial Differ. Equ. 28, 121–138 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaomiao Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Professor Jürgen Jost’s 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhu, M. Boundary Value Problems for Dirac-Harmonic Maps and Their Heat Flows. Vietnam J. Math. 49, 577–596 (2021). https://doi.org/10.1007/s10013-021-00484-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-021-00484-w

Keywords

Mathematics Subject Classification (2010)

Navigation