Skip to main content
Log in

Optimal Control of Semiconductor Melts by Traveling Magnetic Fields

  • ORIGINAL ARTICLE
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the optimal control of traveling magnetic fields in a process of crystal growth from the melt of semiconductor materials is considered. As controls, the phase shifts of the voltage in the coils of a heater-magnet module are employed to generate Lorentz forces for stirring the crystal melt in an optimal way. By the use of a new industrial heater-magnet module, the Lorentz forces have a stronger impact on the melt than in earlier technologies. It is known from experiments that during the growth process, temperature oscillations with respect to time occur in the neighborhood of the solid-liquid interface. These oscillations may strongly influence the quality of the growing single crystal. As it seems to be impossible to suppress them completely, the main goal of optimization has to be less ambitious, namely one tries to achieve oscillations that have a small amplitude and a frequency which is sufficiently high such that the solid-liquid interface does not have enough time to react to the oscillations. In our approach, we control the oscillations at a finite number of selected points in the neighborhood of the solidification front. The system dynamics is modeled by a coupled system of partial differential equations that account for instationary heat conduction, turbulent melt flow, and magnetic field. We report on numerical methods for solving this system and for the optimization of the whole process. Different objective functionals are tested to reach the goal of optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3, 9–23 (2015)

    Google Scholar 

  2. Bärwolff, G., Hinze, M.: Optimization of semiconductor melts. Z. Angew. Math. Mech. 86, 423–437 (2006)

    Article  MathSciNet  Google Scholar 

  3. Blakemore, J.S.: Gallium Arsenide Key Papers in Physics, vol. 1. American Institute of Physics, New York (1961)

    Google Scholar 

  4. Chaboudez, C., Clain, S., Glardon, R., Mari, D., Rappaz, J., Swierkosz, M.: Numerical modeling in induction heating for axisymmetric geometries. IEEE Trans. Magn. 33, 739–745 (1997)

    Article  Google Scholar 

  5. Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38, 2047–2078 (2001)

    Article  MathSciNet  Google Scholar 

  6. Dreyer, W., Druet, P. -É., Klein, O., Sprekels, J.: Mathematical modeling of Czochralski type growth processes for semiconductor bulk single crystals. Milan J. Math. 80, 311–332 (2012)

    Article  MathSciNet  Google Scholar 

  7. Druet, P.-É.: Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in l p (p1). Math. Methods Appl. Sci. 32, 135–166 (2008)

    Article  Google Scholar 

  8. Druet, P.-É.: Existence of weak solutions to the time-dependent MHD equations coupled to the heat equation with nonlocal radiation boundary conditions. Nonlinear Anal. RWA 10, 2914–2936 (2009)

    Article  MathSciNet  Google Scholar 

  9. Druet, P.-É.: Analysis of a coupled system of partial differential equations modeling the interaction between melt flow, global heat transfer and applied magnetic fields in crystal growth. Ph.D Thesis, Humboldt-Universität zu Berlin (2009)

  10. Druet, P.-É.: Existence for the stationary MHD-equations coupled to heat transfer with nonlocal radiation effects. Czech. Math. J. 59, 791–825 (2009)

    Article  MathSciNet  Google Scholar 

  11. Druet, P.-É.: Weak solutions to a model for crystal growth from the melt in changing magnetic fields. In: Kunisch, K. et al. (eds.) Optimal Control of Coupled Systems of Partial Differential Equations. International Series of Numerical Mathematics, vol. 158, pp 123–137. Basel, Birkhäuser (2009)

    Chapter  Google Scholar 

  12. Druet, P.-É.: Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p-summable right-hand side. Appl. Math. 55, 111–149 (2010)

    Article  MathSciNet  Google Scholar 

  13. Druet, P.-É., Klein, O., Sprekels, J., Tröltzsch, F., Yousept, I.: Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects. SIAM J. Control Optim. 49, 1707–1736 (2011)

    Article  MathSciNet  Google Scholar 

  14. Frochte, J.: Ein Splitting-Algorithmus Höherer Ordnung Für Die Navier–Stokes–Gleichung Auf Der Basis Der Finite-Element-Methode. Ph.D Thesis, University of Duisburg-Essen (2005)

  15. Griesse, R., Kunisch, K.: Optimal control for a stationary MHD system in velocity-current formulation. SIAM J. Control Optim. 45, 1822–1845 (2006)

    Article  MathSciNet  Google Scholar 

  16. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  MathSciNet  Google Scholar 

  17. Gunzburger, M., Trenchea, C.: Analysis and discretization of an optimal control problem for the time-periodic MHD equations. J. Math. Anal. Appl. 308, 440–466 (2005)

    Article  MathSciNet  Google Scholar 

  18. Hinze, M.: Control of weakly conductive fluids by near wall Lorentz forces. GAMM-Mitteilungen 30, 149–158 (2007)

    Article  MathSciNet  Google Scholar 

  19. Hinze, M., Pätzold, O., Ziegenbalg, S.: Solidification of a GaAs melt—Optimal control of the phase interface. J. Cryst. Growth 311, 2501–2507 (2009)

    Article  Google Scholar 

  20. Hömberg, D., Sokołowski, J.: Optimal shape design of inductor coils for surface hardening. SIAM J. Control Optim. 42, 1087–1117 (2003)

    Article  MathSciNet  Google Scholar 

  21. Hömberg, D., Volkwein, S.: Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model. 38, 1003–1028 (2003)

    Article  MathSciNet  Google Scholar 

  22. Hou, L.S., Meir, A.J.: Boundary optimal control of MHD flows. Appl. Math. Optim. 32, 143–162 (1995)

    Article  MathSciNet  Google Scholar 

  23. Hou, L.S., Ravindran, S.S.: Computations of boundary optimal control problems for an electrically conducting fluid. J. Comput. Phys. 128, 319–330 (1996)

    Article  MathSciNet  Google Scholar 

  24. Klein, O., Lechner, Ch, Druet, P. -É., Philip, P., Sprekels, J., Frank-Rotsch, Ch, Kießling, F.-M., Miller, W., Rehse, U., Rudolph, P.: Numerical simulations of the influence of a traveling magnetic field, generated by an internal heater-magnet module, on Czochralski crystal growth. In: Baacke, E., Nacke, B (eds.) Proceedings of the International Scientific Colloquium Modelling for Electromagnetic Processing (MEP2008), pp 91–96. Leibniz University of Hannover, Hannover (2008)

  25. Klein, O., Lechner, Ch, Druet, P. -É., Philip, P., Sprekels, J., Frank-Rotsch, Ch, Kießling, F. M., Miller, W., Rehse, U., Rudolph, P.: Numerical simulation of Czochralski crystal growth under the influence of a traveling magnetic field generated by an internal heater-magnet module (HMM). J. Cryst. Growth 310, 1523–1532 (2008)

    Article  Google Scholar 

  26. Klein, O., Lechner, Ch, Druet, P. -É., Philip, P., Sprekels, J., Frank-Rotsch, Ch, Kießling, F.-M., Miller, W., Rehse, U., Rudolph, P.: Numerical simulations of the influence of a traveling magnetic field, generated by an internal heater-magnet module, on liquid encapsulated Czochralski crystal growth. Magnetohydrodynamics 45, 557–567 (2009)

    Article  Google Scholar 

  27. Klein, O., Philip, P.: Correct voltage distribution for axisymmetric sinusoidal modeling of induction heating with prescribed current, voltage, or power. IEEE Trans. Mag. 38, 1519–1523 (2002)

    Article  Google Scholar 

  28. Kolmbauer, M., Langer, U.: A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems. SIAM J. Sci. Comput. 34, B785–B809 (2012)

    Article  MathSciNet  Google Scholar 

  29. Lechner, Ch, Klein, O., Druet, P. -É.: Development of a software for the numerical simulation of VCz growth under the influence of a traveling magnetic field. J. Cryst. Growth 303, 161–164 (2007)

    Article  Google Scholar 

  30. Müller-Urbaniak, S.: Eine Analyse des Zwischenschritt-𝜃-Verfahrens zur lösung der instationären Navier–Stokes–Gleichungen. Technical Report, Preprint 94-01, SFB 359. University of Heidelberg (1994)

  31. Olshanskii, M.A., Reusken, A.: Grad-div stabilization for Stokes equations. Math. Comput. 73, 1699–1718 (2004)

    Article  MathSciNet  Google Scholar 

  32. Rannacher, R.: Numerische Mathematik 2. Technical report University of Heidelberg (2008)

  33. Rudolph, P.: Travelling magnetic fields applied to bulk crystal growth from the melt: the step from basic research to industrial scale. J. Cryst. Growth 310, 1298–1306 (2008)

    Article  Google Scholar 

  34. Rudolph, P., Frank-Rotsch, Ch, Kießling, F.-M., Miller, W., Rehse, U., Klein, O., Lechner, Ch., Sprekels, J., Nacke, B., Kasjanov, H., Lange, P., Ziem, M., Lux, B., Czupalla, M., Root, O., Trautmann, V., Bethin, G.: Crystal growth in heater-magnet modules – from concept to use. In: Braake, E., Nacke, B (eds.) Proceedings of the International Scientific Colloquium Modelling for Electromagnetic Processing (MEP2008), pp 26–29. Leibniz University of Hannover, Hannover (2008)

  35. Rappaz, J., Swierkosz, M.: Induction heating for three-dimensional axisymmetric geometries: modeling and numerical simulation. In: Neunzert, H. (ed.) Progress in Industrial Mathematics at ECMI 94. Lecture Notes in Pure and Appl Mathematics, vol. 216, pp 397–404. Marcel Dekker (1995)

  36. Ravindran, S.S.: Real-time computational algorithm for optimal control of an MHD flow system. SIAM J. Sci. Comput. 26, 1369–1388 (2005)

    Article  MathSciNet  Google Scholar 

  37. Schlömer, N.: maelstrom: A fast magneto-hydrodynamic FEM solver. https://github.com/nschloe/maelstrom

  38. van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1986)

    Article  MathSciNet  Google Scholar 

  39. Yanenko, N.N.: The method of fractional steps. The solution of problems of Mathematical Physics in several variables. Springer, Berlin (1971). Translated from the Russian by T. Cheron. English translation edited by M. Holt

    MATH  Google Scholar 

Download references

Funding

This work was supported by DFG Research Center MATHEON, “Mathematics for Key Technologies” in Berlin, project C9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredi Tröltzsch.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestler, P., Schlömer, N., Klein, O. et al. Optimal Control of Semiconductor Melts by Traveling Magnetic Fields. Vietnam J. Math. 47, 793–812 (2019). https://doi.org/10.1007/s10013-019-00355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-019-00355-5

Keywords

Mathematics Subject Classification (2010)

Navigation