Skip to main content
Log in

Control of Melt Flow and Oxygen Distribution Using Traveling Magnetic Field during Directional Solidification of Silicon Ingots

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Traveling magnetic field (TMF) is a potential method to control the melt flow and impurity transport during the directional solidification (DS) of silicon ingots. We numerically study the control mechanism of a downward and an upward TMF with different frequencies on the silicon melt flow and oxygen distribution in the DS process. Model experiment of generation and measurement of a TMF is first carried out to validate the magnetic field computing program. Then, the TMF frequency is varied to study its influence on the direction and magnitude of Lorentz force, pattern and intensity of silicon melt flow, and distribution of oxygen impurity. Results show that the downward TMF with large frequency can induce local melt flow above the melt-crystal interface and block the oxygen transport from the dominant flow to the interface. The upward TMF with small frequency and large amplitude can induce thoroughly upward melt flow along the crucible side wall and take the oxygen far away from the melt-crystal interface, which is better for reducing the oxygen content in the silicon melt and ingots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerkar F, Kheloufi A, Dokhan N, Ouadjaout D, Belhousse S, Medjahed S, Meribai N, Laib K (2019) Silicon. https://doi.org/10.1007/s12633-019-00154-0

  2. Srinivasan M, Ramasamy P (2017). Silicon 9(1):7–16

    Article  CAS  Google Scholar 

  3. Lan CW, Hsu C, Nakajima K (2015) In: Nishinga T, Rudolph P (eds) handbook of crystal growth, vol 2A. 2nd edn., p 381

  4. Dadzis K, Ehrig J, Niemietz K, Patzold O, Wunderwald U, Friedrich J (2011). J Cryst Growth 333(1):7–15

    Article  CAS  Google Scholar 

  5. Dropka N, Miller W, Menzel R, Rehse U (2010). J Cryst Growth 312(8):1407–1410

    Article  CAS  Google Scholar 

  6. Rudolph R, Kakimoto K (2009). MRS Bull 34(4):251–258

    Article  CAS  Google Scholar 

  7. Kiessling FM, Bullesfeld F, Dropka N, Frank-Rotsch C, Muller M, Rudolph P (2012). J Cryst Growth 360:81–86

    Article  CAS  Google Scholar 

  8. Dadzis K, Vizman D, Friedrich J (2013). J Cryst Growth 367:77–87

    Article  CAS  Google Scholar 

  9. Vizman D, Dadzis K, Friedrich J (2013). J Cryst Growth 381:169–178

    Article  CAS  Google Scholar 

  10. Yu QH, Liu LJ, Li ZY, Su P (2014). J Cryst Growth 401:285–290

    Article  CAS  Google Scholar 

  11. Yu QH, Liu LJ, Li ZY, Shao Y (2018). Int J Heat Fluid Fl 71:55–67

    Article  Google Scholar 

  12. Tavakoli MH, Omid S, Mohammadi-Manesh E (2011). CrystEngComm 13(16):5088–5093

    Article  CAS  Google Scholar 

  13. Honarmandnia M, Tavakoli MH, Sadeghi H (2016). CrystEngComm 18(21):3942–3948

    Article  CAS  Google Scholar 

  14. Li ZY, Liu LJ, Nan XH, Kakimoto K (2012). J Cryst Growth 346(1):40–44

    Article  CAS  Google Scholar 

  15. Liu LJ, Kakimoto K (2005). Int J Heat Mass Transf 48(21–22):4481–4491

    Article  CAS  Google Scholar 

  16. Matsuo H, Ganesh RB, Nakano S, Liu LJ, Kangawa Y, Arafune K, Ohshita Y, Yamaguchi M, Kakimoto K (2008). J Cryst Growth 310(22):4666–4671

    Article  CAS  Google Scholar 

  17. Togawa S, Huang XM, Izunome K, Terashima K, Kimura S (1995). J Cryst Growth 148(1–2):70–78

    Article  CAS  Google Scholar 

  18. Kudla C, Blumenau AT (2013) Bullesfeld F, etc. J Cryst Growth 365:54–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. 51406156, 51606135), and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JQ5005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaoyang Li or Lijun Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Li, Z., Yu, Q. et al. Control of Melt Flow and Oxygen Distribution Using Traveling Magnetic Field during Directional Solidification of Silicon Ingots. Silicon 12, 2395–2404 (2020). https://doi.org/10.1007/s12633-019-00339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00339-7

Keywords

Navigation