Vietnam Journal of Mathematics

, Volume 44, Issue 3, pp 477–484 | Cite as

Pseudo-Valuation Modules

  • Reza Jahani-NezhadEmail author
  • Foroozan Khoshayand


The aim of this paper is to generalize the notion of pseudo-valuation to modules over arbitrary commutative rings. We generalize the notion of strongly prime ideal, as defined in Badawi et al. (Lecture Notes in Pure and Applied Mathematics 185:57–67, 1997, to the notion of strongly prime submodule. We define a module M to be a pseudo-valuation module if every prime submodule of M is strongly prime. It is shown that if M has a maximal submodule N, then M is pseudo-valuation if and only if N is strongly prime. Also, we characterize strongly prime submodules in pseudo-valuation modules. We investigate some properties of these modules, and study relations between some structures and these modules.


Strongly prime ideal Pseudo-valuation ring Uniserial module 

Mathematics Subject Classification (2010)

13A18 13A15 13A10 13F30 13F05 



We would like to thank the referee for the valuable suggestions and comments.


  1. 1.
    Anderson, D.F., Badawi, A., Dobbs, D.E.: Pseudo-valuation rings II. Boll. Unione Mat. Ital. 3-B, 535–545 (2000)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Badawi, A., Anderson, D.F., Dobbs, D.E.: Pseudo-valuation rings. In: Cahen, P.-J., et al. (eds.) Commutative Ring Theory. Lecture Notes Pure Appl. Math., vol. 185, pp. 57–67. Marcel Dekker, New York/Basel (1997)Google Scholar
  3. 3.
    Badawi, A.: On pseudo-almost valuation domains. Commun. Algebra 35, 1167–1181 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Badawi, A.: Remarks on pseudo-valuation rings. Commun. Algebra 28, 2343–2358 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Badawi, A.: A visit to valuation and pseudo-valuation domains. In: Anderson, D.E., Dobbs, D. (eds.) Zero-Dimensional Commutative Rings. Lecture Notes Pure Appl. Math., vol. 171, pp. 155–161. Marcel Dekker, New York/Basel (1995)Google Scholar
  6. 6.
    Badawi, A., Houston, E.: Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains. Commun. Algebra 30, 1591–1606 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    El-Bast, Z.A., Smith, P.P.: Multiplication modules. Commun. Algebra 16, 755–779 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hedstrom, J.R., Houston, E.G.: Pseudo-valuation domains. Pac. J. Math. 75, 137–147 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hedstrom, J.R., Houston, E.G.: Pseudo-valuation domains II. Houst. J. Math. 4, 199–207 (1978)MathSciNetzbMATHGoogle Scholar
  10. 10.
    McCasland, R.L., Moore, M.E., Smith, P.F.: An introduction to Zariski spaces over Zariski topologies. Rocky Mt. J. Math. 28, 1357–1369 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Moghaderi, J., Nekooei, R.: Strongly prime submodules and pseudo-valuation modules. Int. Electron. J. Algebra 10, 65–75 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations