Skip to main content
Log in

Spiral bevel gears tooth geometry based on tooth trace and contact ellipse theory

Die Radzahngeometrie von Spiralkegeln basierend auf Zahnkurve und Kontaktellipsentheorie

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

This paper presents a novel procedure for spiral bevel gear design without classical gear machine cutting parameters considerations; it is based on favorable conditions of contact and interference avoidance constraints. In the first step, the work is focused on the tooth trace mathematical model; it is built on the pitch cone surface with its normalized parameters. In the second step, tooth surface geometry is generated by a kinematic procedure using the calculated tooth trace. Design parameters are calculated to satisfy favorable conditions of meshing and contact using relationships between principal curvatures and directions of pinion and gear surfaces and Tooth Contact Analysis (TCA) algorithm. Calculated tooth surface is evaluated using two tools TCA and Finite Element Analysis (FEA); function of transmission errors obtained from TCA tool has the same parabolic form and magnitude as the convensional geometry; FEA gives a potential contact locus on the mean pich line of the drive teeth without edge contact or stress concentration zones.

Zusammenfassung

Dieses Papier stellt ein neuartiges Verfahren für das Design von Spiralkegelrädern vor, ohne die klassischen Schneidparameter von Zahnradmaschinen zu berücksichtigen. Es basiert auf günstigen Kontaktbedingungen und der Vermeidung von Interferenzen. Im ersten Schritt liegt der Fokus auf dem mathematischen Modell der Zahnkurve; es wird auf der Kegelkegeloberfläche mit ihren normalisierten Parametern aufgebaut. Im zweiten Schritt wird die Geometrie der Zahnfläche mithilfe eines kinematischen Verfahrens unter Verwendung der berechneten Zahnkurve erzeugt. Designparameter werden berechnet, um günstige Bedingungen für das Eingreifen und den Kontakt zu erfüllen, unter Verwendung von Beziehungen zwischen den Hauptkrümmungen und Richtungen der Ritzel- und Zahnradflächen sowie des Zahnkontaktanalysenalgorithmus (ZKA). Die berechnete Zahnfläche wird mithilfe von zwei Werkzeugen bewertet: ZKA und Finite-Elemente-Analyse (FEA). Die Funktion der Übertragungsfehler, die mit dem ZKA erhalten wurden, hat die gleiche parabolische Form und Größe wie die konventionelle Geometrie; FEA gibt einen potenziellen Kontaktort auf der mittleren Steigungslinie der Antriebszähne ohne Kantenkontakt oder Spannungskonzentrationszonen an.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Klingelnberg J (2016) Bevel Gear. Springer, Germany

    Book  Google Scholar 

  2. Li H, Wei W, Liu P, Kang D, Zhang S (2014) The kinematic synthesis of involute spiral bevel gears and their tooth contact analysis. Mech Mach Theory 79:141–157

    Article  Google Scholar 

  3. Litvin FL, Fuentes A, Fan Q, Handschuh RF (2002) Computerized design, simulation of meshing, and contact and stress analysis of face-milled formate generated spiral bevel gears. Mech Mach Theory 37(5):441–459

    Article  Google Scholar 

  4. Litvin FL, Fuentes A, Hayasaka K (2006) Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears. Mech Mach Theory 41(1):83–118

    Article  Google Scholar 

  5. Yang J, Shi Z, Zhang H, Li T, Nie S, Wei B (2018) Dynamic analysis of spiral bevel and hypoid gears with high-order transmission errors. J Sound Vib 417:149–164

    Article  Google Scholar 

  6. Gonzalez Perez I, Fuentes-Aznar A (2017) Analytical determination of basic machine-tool settings for generation of spiral bevel gears and compensation of errors of alignment in the cyclo-palloid system. Int J Mech Sci 120:91–104

    Article  Google Scholar 

  7. Tan R, Chen B, Peng C, Li X (2015) Study on spatial curve meshing and its application for logarithmic spiral bevel gears. Mech Mach Theory 86:172–190

    Article  Google Scholar 

  8. Shuai M, Yidu Z (2015) Spiral bevel gear true tooth surface precise modeling and experiments studies based on machining adjustment parameters. Proceedings of the Institution of Mechanical Engineers, Part C. J Mech Eng Sci 229(14):2524–2533

    Article  Google Scholar 

  9. Simon V (2007) Computer simulation of tooth contact analysis of mismatched spiral bevel gears. Mech Mach Theory 42(3):365–381

    Article  Google Scholar 

  10. Drechsel A, Constien L, Pellkofer J, Boiadjiev I, Stahl K (2022) Extended calculation method for determining the pitting load carrying capacity of bevel and hypoid gears. Forsch Ingenieurwes 86(4):829–844

    Article  Google Scholar 

  11. Cai Y, Yao L, Ding J, Ouyang S, Zhang J (2019) Study on transmission error of double circular arc spiral bevel gears for nutation drive based on assembly errors and different loads. Forsch Ingenieurwes 83(3):481–490

    Article  Google Scholar 

  12. Simon V (2013) Design of face-hobbed spiral bevel gears with reduced maximum tooth contact pressure and transmission errors. Chin J Aeronaut 26(3):777–790

    Article  Google Scholar 

  13. Guo W, Mao S, Yang Y, Kuang Y (2016) Optimization of cutter blade profile for face-hobbed spiral bevel gears. Int J Adv Manuf Technol 85:209–216

    Article  Google Scholar 

  14. Litvin FL, Fuentes A (2004) Gear Geometry and Applied Theory. Cambridge University Press, USA

    Book  Google Scholar 

  15. Zhang Y, Yan H-Z, Zeng T, Zeng Y-Y (2016) Tooth surface geometry optimization of spiral bevel and hypoid gears generated by duplex helical method with circular profile blade. J Cent South Univ 23(3):544–554

    Article  Google Scholar 

  16. Wang S, Zhou Y, Tang J, Xiao Z (2019) An adaptive geometric meshing theory for the face-milled generated spiral bevel gears. Forsch Ingenieurwes 83:775–780

    Article  Google Scholar 

  17. Simon VV (2014) Optimal machine-tool settings for the manufacture of face-hobbed spiral bevel gears. J Mech Des 136(8):081004

  18. Wang P-Y, Fong Z-H (2006) Fourth-order kinematic synthesis for face-milling spiral bevel gears with modified radial motion (mrm) correction. J Mech Des 128(2):457–467

    Article  Google Scholar 

  19. Litvin FL, Zhang Y (1991) Local synthesis and tooth contact analysis of face-milled spiral bevel gears. Technical report. Illinois Univ at Chicago Circle, Chicago

    Google Scholar 

  20. Mu Y, Li W, Fang Z, Zhang X (2018) A novel tooth surface modification method for spiral bevel gears with higher-order transmission error. Mech Mach Theory 126:49–60

    Article  Google Scholar 

  21. Su J, Fang Z, Cai X (2013) Design and analysis of spiral bevel gears with seventh-order function of transmission error. Chin J Aeronaut 26(5):1310–1316

    Article  Google Scholar 

  22. Zhou Y, Chen ZC, Tang J (2017) A new method of designing the tooth surfaces of spiral bevel gears with ruled surface for their accurate five-axis flank milling. J Manuf Sci Eng 139(6):61004

    Article  Google Scholar 

  23. An L, Zhang L, Qin S, Lan G, Chen B (2020) Mathematical design and computerized analysis of spiral bevel gears based on geometric elements. Mech Mach Theory 156:104131

    Article  Google Scholar 

  24. Jiang J, Luo Q, Wang L, Qiao L, Li M (2020) Review on logarithmic spiral bevel gear. J Brazilian Soc Mech Sci Eng 42(8):1–14

    Article  Google Scholar 

  25. Duan Z, Chen H, Ju Z, Liu J (2012) Mathematical model and manufacture programming of loxodromic-type normal circular-arc spiral bevel gear. Front Mech Eng 7:312–321

    Article  Google Scholar 

  26. Chu C-H, Zhou Y, Zhang J-H, Tang J (2023) Computational approaches for improving machining precision in five-axis flank milling of spiral bevel gears. Comput Ind Eng 177:108984

    Article  Google Scholar 

  27. Escudero GG, Bo P, González-Barrio H, Calleja-Ochoa A, Bartoň M, de Lacalle LNL (2022) 5‑axis double-flank cnc machining of spiral bevel gears via custom-shaped tools–part ii: physical validations and experiments. Int J Adv Manuf Technol 119(3-4):1647–1658

    Article  Google Scholar 

  28. Bo P, González H, Calleja A, de Lacalle LNL, Bartoň M (2020) 5‑axis double-flank cnc machining of spiral bevel gears via custom-shaped milling tools–part i: Modeling and simulation. Precis Eng 62:204–212

    Article  Google Scholar 

  29. Dooner DB (2012) Kinematic Geometry of Gearing. Wiley, Puerto Rico

    Book  Google Scholar 

  30. Vivet M, Tamarozzi T, Desmet W, Mundo D (2020) On the modelling of gear alignment errors in the tooth contact analysis of spiral bevel gears. Mech Mach Theory 155:104065

    Article  Google Scholar 

  31. Zhan J, Fard M, Jazar R (2017) A cad-fem-qsa integration technique for determining the time-varying meshing stiffness of gear pairs. Measurement 100:139–149

    Article  Google Scholar 

Download references

Acknowledgements

The authors have nothing to acknowledge.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yacine Benabid.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobzili, S., Benabid, Y. & Riani, A. Spiral bevel gears tooth geometry based on tooth trace and contact ellipse theory. Forsch Ingenieurwes 88, 8 (2024). https://doi.org/10.1007/s10010-024-00729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10010-024-00729-3

Navigation