Skip to main content
Log in

Optical-irradiance performance investigation to optimize a solar still with internal reflectors and double external boosters

Untersuchung der Leistung der optischen Bestrahlungsstärke zur Optimierung eines Solardestillierapparats mit internen Reflektoren und doppelten externen Boostern

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

This study was performed to optimize the single slope solar still with internally reflecting walls and externally reflecting, top and bottom, flat booster reflectors using an optical irradiance model. The model uses a 3‑D hybrid recursive ray tracing method developed in this study. The model was validated in a couple of geometrical scenarios. To measure irradiance, the rays were generated using the Latin Hypercube Sampling (LHS) technique and traced to determine how many were received by the still’s basin. The different varieties of stills were considered in these regards. The results were compared with those stills with the same geometry but lacking the reflectors/boosters. The model was then used to obtain the optimum values for the boosters’ lengths and angles for various designs of stills, to gain the desired optical-irradiance performance. Due to high dimensionality of the problem, Particle Swarm Optimization (PSO) was utilized for the purpose. Contour plots were also developed to show the effects of changing the booster angles on the performance.

Zusammenfassung

Diese Studie wurde durchgeführt, um den Single-Slope-Solardestillierapparat mit innen reflektierenden Wänden und außen reflektierenden flachen Booster-Reflektoren oben und unten mithilfe eines optischen Bestrahlungsstärkemodells zu optimieren. Das Modell verwendet eine in dieser Studie entwickelte hybride rekursive 3D-Raytracing-Methode. Das Modell wurde in einigen geometrischen Szenarien validiert. Um die Bestrahlungsstärke zu messen, wurden die Strahlen mit der Latin Hypercube Sampling (LHS)-Technik erzeugt und verfolgt, um zu bestimmen, wie viele vom Destillationsbecken empfangen wurden. Dabei wurden die verschiedenen Destillierarten berücksichtigt. Die Ergebnisse wurden mit solchen Standbildern mit der gleichen Geometrie, aber ohne Reflektoren/Booster verglichen. Das Modell wurde dann verwendet, um die optimalen Werte für die Längen und Winkel der Booster für verschiedene Destillierdesigns zu ermitteln und so die gewünschte optische Bestrahlungsleistung zu erzielen. Aufgrund der hohen Dimensionalität des Problems wurde zu diesem Zweck die Partikelschwarmoptimierung (PSO) eingesetzt. Außerdem wurden Konturdiagramme entwickelt, um die Auswirkungen einer Änderung der Boosterwinkel auf die Leistung zu zeigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Uzair M, Naqvi AA, Yousuf MU (2022) Numerical investigation to determine the optimal tilt angle of single slope solar still during summer season. TECCIENCIA 17(32):29–39

    Article  Google Scholar 

  2. Eltawil MA, Zhengming Z, Yuan L (2009) A review of renewable energy technologies integrated with desalination systems. Renew Sustain Energy Rev 13(9):2245–2262

    Article  Google Scholar 

  3. Ibrahim AG, Elshamarka SE (2015) Performance study of a modified basin type solar still. Sol Energy 118:397–409

    Article  Google Scholar 

  4. El-Swify ME, Metias MZ (2002) Performance of double exposure solar still. Renew Energy 26(4):531–547

    Article  Google Scholar 

  5. Al-Hayeka I, Badran O (2004) The effect of using different designs of solar stills on water distillation. Desalination 169(2):121–127

    Article  Google Scholar 

  6. Tanaka H (2009) Effect of inclination of external reflector of basin type still in summer. Desalination 242(1–3):205–214

    Article  Google Scholar 

  7. Tanaka H, Nakatake Y (2007) Effect of inclination of external flat plate reflector of basin type still in winter. Sol Energy 81(8):1035–1042

    Article  Google Scholar 

  8. Shanmugan S, Rajamohan P, Mutharasu D (2008) Performance study on an acrylic mirror boosted solar distillation unit utilizing seawater. Desalination 230(1–3):281–287

    Article  Google Scholar 

  9. Tanaka H (2009) Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination 249(1):130–134

    Article  Google Scholar 

  10. Khalifa A, Ibrahim H (2009) Effect of inclination of the external reflector on the performance of a basin type solar still at various seasons. Energy Sustain Dev 13(4):244–249

    Article  Google Scholar 

  11. Al-Karaghouli A, Minasian A (1995) A floating-wick type solar still. Renew Energy 6(1):77–79

    Article  Google Scholar 

  12. Tanaka H (2011) A theoretical analysis of basin type solar still with flat plate external bottom reflector. Desalination 279(1–3):243–251

    Article  Google Scholar 

  13. Cheng ZD, He YL, Cui FQ, Du BC, Zheng ZJ, Xu Y (2014) Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model. Appl Energy 115:559–572

    Article  Google Scholar 

  14. Rehman N (2018) Optical-irradiance ray-tracing model for the performance analysis and optimization of a façade integrated solar collector with a flat booster reflector. Sol Energy 173:1207–1215

    Article  Google Scholar 

  15. Tripathi R, Tiwari GN (2004) Performance evaluation of a solar still by using the concept of solar fractionation. Desalination 169(1):69–80

    Article  Google Scholar 

  16. Rehman N (2019) Optical-irradiance ray-tracing model for the performance analysis and optimization of a single slope solar still. Desalination 457:22–31

    Article  Google Scholar 

  17. Rehman N, Uzair M (2021) Hybrid ray tracing model and particle swarm optimization for the performance of an internally reflecting solar still with a booster reflector. Arab J Sci Eng 46(3):1–12

    Article  Google Scholar 

  18. Tabet I, Touafek K, Bellel N, Bouarroudj N, Khelifa A, Adouane M (2014) Optimization of angle of inclination of the hybrid photovoltaic-thermal solar collector using particle swarm optimization algorithm. J Renew Sustain Energy 6(5):53116

    Article  Google Scholar 

  19. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, December, 1995

    Google Scholar 

  20. Geitz B (2007) Vector geometry for computer graphics. https://cs.oberlin.edu/~bob/cs357.08/VectorGeometry/VectorGeometry.pdf. Accessed 3 Jan 2019

  21. scratchapixel.com A Minimal Ray-Tracer: Rendering Simple Shapes (Sphere, Cube, Disk, Plane, etc.). https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-plane-and-ray-disk-intersection. Accessed 3 Jan 2019

  22. Weisstein EW Reflection from Wolfram MathWorld. http://mathworld.wolfram.com/Reflection.html. Accessed 15 Oct 2018

  23. Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81(1):23–69

    Article  Google Scholar 

  24. Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab Eng Syst Saf 91(10):1175–1209

    Article  Google Scholar 

  25. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245

    MathSciNet  MATH  Google Scholar 

  26. Owen A (2003) Quasi-Monte Carlo sampling. In: Monte Carlo ray tracing: SIGGRAPH 2003 course 44. ACM, New York, pp 69–88

    Google Scholar 

  27. Mezura-Montes E, Coello C (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol Comput 1(4):173–194

    Article  Google Scholar 

  28. Mohandes M (2012) Modeling global solar radiation using Particle Swarm Optimization (PSO). Sol Energy 86(11):3137–3145

    Article  Google Scholar 

  29. Google Google SketchUp—3D modeling for everyone. https://www.sketchup.com/. Accessed 28 May 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Uzair.

Ethics declarations

Conflict of interest

Muhammad Uzair and Naveed ur Rehman declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzair, M., ur Rehman, N. Optical-irradiance performance investigation to optimize a solar still with internal reflectors and double external boosters. Forsch Ingenieurwes 87, 739–748 (2023). https://doi.org/10.1007/s10010-023-00666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-023-00666-7

Navigation