Skip to main content

Advertisement

Log in

Integration of mechanical deformation and optical losses in the design of linear Fresnel solar collectors

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Increasing energy efficiency of concentrating solar power (CSP) is of great importance to accelerate the market penetration of these technologies. The design of CSP components must take into account manufacturing cost as well as energy efficiency. The present paper proposes a method to analyze optical efficiency of Linear Fresnel reflectors taking into account the environmental conditions present in the implantation site. The objective is to design Fresnel collector that combines a good optical efficiency with a low consumption of raw material during its manufacturing. The first step is to quantify the impact of external environment on the mechanical behavior of collector structure. The impact of wind action on collector structure is evaluated by the mean of an accurate fluid dynamics analysis. Ray tracing method is then used to quantify the optical performance of reflective mirrors taking in account the deformation of collector structure caused by wind action and other external loads. In order to illustrate the proposed method, many design solutions of collector were analyses in order to maximize the performances in terms of optical efficiency and structure weight. A preference-based multi-objective model is then used to synthesize the performances of each design solutions in a single value. This model is based on the use of desirability functions and an aggregation operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hoffert, M.I., Caldeira, K., Benford, G., Criswell, D.R., Green, C., Herzog, H.: Advanced technology paths to global climate stability energy for a green house planet. Science 298, 981–987 (2002)

    Article  Google Scholar 

  2. He, Y.L., Wang, K., Du, B.C., Qiu, Y., Liang, Q.: Non-uniform characteristics of solar flux distribution in the concentrating solar power systems and its corresponding solutions: a review. Chin. Sci. Bull. 61, 3208–3237 (2016)

    Article  Google Scholar 

  3. Weinstein, L.A., Loomis, J., Bhatia, B., Bierman, D.M., Wang, E.N., Chen, G.: Concentrating solar power. Chem. Rev. 115, 12797–12838 (2015)

    Article  Google Scholar 

  4. Wang, K., He, Y.L., Qiu, Y., Zhang, Y.W.: A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver. Renew. Energ. 89, 93–107 (2016)

    Article  Google Scholar 

  5. Jha, A.: Concentrated Solar Power Could Generate ‘quarter of World’s Energy’. The guardian publishing website (2009). https://www.theguardian.com/environment/2009/may/26/solarpower-renewableenergy. Accessed 5 May 2018

  6. Dalvi, V.H., Panse, S.V., Joshi, J.B.: Solar thermal technologies as a bridge from fossil fuels to renewables. Nat. Clim. Change 5, 1007–1013 (2015)

    Article  Google Scholar 

  7. Porta, F.L.: Technical and economical analysis of future perspectives of solar thermal power plants. In: Report of IER, pp. 1–86. Institute for Energy Economics and Rational Energy. University of Stuttgart, Stuttgart (2005)

  8. Lancereau, Q., Rabut, Q., Itskhokine, D., Benmarraze, M.: Wind loads on Linear Fresnel Reflectors’ technology: a numerical study. Enrgy. Proced. 69, 116–125 (2015)

    Article  Google Scholar 

  9. Zhu, G., Wendelin, T., Wagner, M.J., Kutscher, C.: History, current state, and future of linear Fresnel concentrating solar collectors. Sol. Energy 103, 639–652 (2014)

    Article  Google Scholar 

  10. Mathioulakis, E., Papanicolaou, E., Belessiotis, V.: Optical performance and instantaneous efficiency calculation of linear Fresnel solar collectors. Int. J. Energ. Res. 42(3), 1–15 (2017)

    Google Scholar 

  11. Kumara, V., Shrivastavaa, R.L., Untawaleb, S.P.: Fresnel lens: a promising alternative of reflectors in concentrated solar power. Renew. Sustain. Energ. Rev. 4, 376–390 (2015)

    Article  Google Scholar 

  12. Benyakhlef, S., Al Mers, A., Merroun, O., Bouatem, A., Boutammachte, N., El Alj, S., Ajdad, H.: Impact of heliostat curvature on optical performance of Linear Fresnel solar concentrators. Renew. Energ. 98, 463–474 (2016)

    Article  Google Scholar 

  13. Benyakhlef, S., Al Mers, A., Merroun, O., Bouatem, A., Boutammachte, N., El Alj, S., Ajdad, A., Erregueragui, Z., Zemmouri, E.: Curvature variability study for small- and large-scale linear Fresnel solar fields: a step toward optimization. J. Sol. Energ. Eng. 139(5), 051009 (2017)

    Article  Google Scholar 

  14. Zhu, J., Huang, H.: Design and thermal performances of semi-parabolic linear Fresnel reflector solar concentration collector. Energ. Convers. Manag. 77, 733–737 (2014)

    Article  Google Scholar 

  15. Qiu, Y., He, Y.L., Cheng, Z.D., Wang, K.: Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Appl. Energ. 146, 162–173 (2015)

    Article  Google Scholar 

  16. Boito, P., Grena, R.: Optimization of the geometry of Fresnel linear collectors. Sol. Energy 135, 479–486 (2016)

    Article  Google Scholar 

  17. Honghang, S., Bo, G., Qiang, Y.: A review of wind loads on heliostats and trough collectors. Renew. Sustain. Energ. Rev. 32, 206–221 (2014)

    Article  Google Scholar 

  18. Thalange, V.C., Dalvi, V.H., Mahajani, S.M., Panse, S.V., Joshi, J.B.: Deformation and optics based structural design and cost optimization of cylindrical reflector system. Sol. Energy 158, 687–700 (2017)

    Article  Google Scholar 

  19. Prahl, C., Theimel, T.A., Ralf, U.: Structural optimization of a line-focussing solar collector with stationary absorber tube. In: 17th SolarPACES Conference, Granada (2011)

  20. Pottler, K., Ulmera, S., Lüpfert, E., Landmann, M., Röger, M., Prahl, C.: Ensuring performance by geometric quality control and specifications for parabolic trough solar fields. Energy Procedia 49, 2170–2179 (2014)

    Article  Google Scholar 

  21. Spencer, G.H., Murty, M.V.R.K.: General ray-tracing procedure. J. Opt. Soc. Am. 52, 672–678 (1962)

    Article  Google Scholar 

  22. Otto, K.N., Antonsson, E.K.: The method of imprecision compared to utility theory for design selection problems. In: Design Theory and Methodology DTM’93, pp. 167–173 (1993)

  23. Harrington, E.C.: The desirability function. Ind. Qual. Contr. 21(10), 494–498 (1965)

    Google Scholar 

  24. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. Syst. 18(1), 183–190 (1988)

    Article  MATH  Google Scholar 

  25. Scott, M.J., Antonsson, E.K.: Using indifference points in engineering decisions. In: 11th International Conference on Design Theory and Methodology, Baltimore (2000)

  26. Collignan, A., Sebastian, P., Pailhes, J., Ledoux, Y.: Optimization of product in dynamic design space and selection through the arc-elasticity concept. Int. J. Interact. Des. Manuf. 5, 243–254 (2011)

    Article  Google Scholar 

  27. Quirante, T., Ledoux, Y., Sebastian, P.: Multiobjective optimization including design robustness objectives for the embodiment design of a two-stage flash evaporator. Int. J. Interact. Des. Manuf. 6, 29–39 (2012)

    Article  Google Scholar 

  28. Jin, Y., Geslin, M., Lu, S.C.Y.: Impact of argumentative negotiation on collaborative engineering. CIRP Ann. 56(1), 181–184 (1991)

    Article  Google Scholar 

  29. El Mghouchi, Y., El Bouardi, A., Choulli, Z., Ajzoul, T.: New model to estimate and evaluate the solar radiation. Int. J. Sustain. Built Environ. 3(2), 225–234 (2014)

    Article  Google Scholar 

  30. Moghimi, M.A., Ahmadi, G.: Wind barriers optimization for minimizing collector mirror soiling in a parabolic trough collector plant. Appl. Energy 225, 413–423 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi El Amine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Amine, M., Sallaou, M. Integration of mechanical deformation and optical losses in the design of linear Fresnel solar collectors. Int J Interact Des Manuf 13, 831–840 (2019). https://doi.org/10.1007/s12008-019-00542-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00542-1

Keywords

Navigation